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Krzysztof Grąbczewski and Norbert Jankowski

Department of Informatics
Nicolaus Copernicus University
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Abstract. We present a novel approach to meta-learning, which is not just a
ranking of methods, not just a strategy for building model committees, but an
algorithm performing a search similar to what human expertsdo when analyzing
data, solving full scope of data mining problems. The searchthrough the space of
possible solutions is driven by special mechanisms of machine generators based
on meta-schemes. The approach facilitates using human experts knowledge to
restrict the search space and gaining meta-knowledge in an automated manner.
The conclusions help in further search and may also be passedto other meta-
learners. All the functionality is included in our new general architecture for data
mining, especially eligible for meta-learning tasks.

1 Introduction

Meta-learning is learning how to learn. In order to perform meta-level analysis oflearn-
ing from data one needs a robust system for different kinds of learning with uniform
management of miscellaneous learning machines and their results. Our data mining
system is an implementation of a very general view of learning machines and models.
Therefore it is very flexible and eligible for sophisticatedmeta-level analysis of learning
processes.

A learning problem can be defined asP = 〈D,M〉, whereD ⊆ D is a learning
dataset andM is amodel space.

In computational intelligence attractive modelsm ∈ M are determined with learn-
ing processs:

Lp : D → M, (1)

wherep defines the parameters of the learning machine. This view of learning encircles
many different approaches of supervised and unsupervised learning including classi-
fication, approximation, clustering, finding associationsetc. Such definition does not
limit the concept of search to specific kinds of learning methods like neural networks
or statistical algorithms, however such reduction of modelspace is possible in practice.

In real life problems, sensible solutionsm ∈ M are usually so complex, that it is
very advantageous to decompose the given problemP = 〈D,M〉 into subproblems:

[P1, . . . ,Pn] (2)
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wherePi = 〈Di,Mi〉. In this way, the vector of solutions of the problemsPi consti-
tutes a model for the main problemP :

m = [m1, . . . , mn], (3)

and the model space gets the form

M = M1 × . . . ×Mn. (4)

In practiceM is usually a subspace ofM1 × · · · × Mn, because the submachines
may extract not only the component needed for the main model but also some other
information. It is not a problem, because in such cases, the final model is just a simple
projection of the whole complex model.

The solution constructed by a decomposition is often much easier to find, because
the main task gets reduced to a series of simpler tasks: modelmi solving the subproblem
Pi, is the result of a learning process

L
pi

i : Di → Mi, i = 1, . . . , n, (5)

where
Di =

∏

k∈Ki

Mk, (6)

andKi ⊆ {0, 1, . . . , i−1},M0 = D. It means that the learning machineL
pi

i may take
advantage of some of the modelsm1, . . . , mi−1 learned by preceding subprocesses
and of the original datasetD of the main problemP . Naturally, also parametersp =
(p1, . . . , pn).

So, the main learning processLp is decomposed to the vector

[Lpi

i , . . . , Lpn

n ]. (7)

Such decomposition is often very natural: a standardization or feature selection nat-
urally precedes classification, a set of classifiers precedes a committee module etc. Note
that, the subprocesses need not to be dependent on all preceding subprocesses, so such
decomposition has natural consequences in the possibilityof parallelization of problem
solving.

A real life example of a learning process decomposition is presented in figure 1,
where a classification committee is constructed, but memberclassifiers need the data
transformed before they can be applied. The structure of theproject directly corresponds
to both the learning process and the final model decomposition. The rectangle including
all small boxes but “Data”, depicts the whole learning process, which, given dataset, is
expected to provide a classification routine. For differentkinds of analysis like testing
classification accuracy etc. it must be treated as a whole, but from the formal point of
view each inner rounded rectangle is a separate process solving its task and providing
its model.

Because each DM process is a directed acyclic graph, it is easy to show the com-
posite process and composite model it corresponds to. The model of figure 1 may be
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Fig. 1. An example of a DM project.

decomposed as
mrfe = Lrfe(Data)
mstd = Lstd(mrfe)
mnbc = Lnbc(mstd)
mdiscr = Ldiscr(mstd)
mid3 = Lid3(mdiscr)
mdtc = Ldtc(mstd)
mknn = Lknn(mdtc)
mcomm = Lcomm(mnbc, mid3, mknn)

(8)

The subscripts are easy to decode, when compared to the figure1. Each of the compo-
nents learns some part of the final model, which has a corresponding structure.

Such general and uniform foundations of our DM system facilitate solving problem
of any kind, requiring any structural complexity, providedappropriate components. It
is especially important when undertaking meta-learning challenges, where we must try
many different methods, from simple ones to those of large complexity. Nontriviality
of model selection is evident when browsing the results of NIPS 2003 Challenge in
Feature Selection [1, 2] or WCCI Performance Prediction Challenge [3] in 2006.

Some meta-learning approaches [4–7] are based on data characterization techniques
(characteristics of data like the numbers of features/vectors/classes, features variances,
information measures on features, also from decision treesetc.) or onlandmarking
(machines are ranked on the basis of simple machines performances before starting the
more power consuming ones). Although the projects are really interesting, they still
may be done in different ways or, at least, may be extended in some aspects. The whole
space of possible and interesting models is not browsed so thoroughly by the mentioned
projects, thereby some types of solutions can not be found with them.

In our approach the termmeta-learning encompasses the whole complex process of
model construction including adjustment of training parameters for different parts of the
model hierarchy, construction of hierarchies, combining miscellaneous data transforma-
tion methods and other adaptive processes, performing model validation and complexity
analysis, etc.

This article presents some details of the structure and functionality of a meta-learning
machine, naturally implemented within the architecture ofour recently created system.
It is an efficient algorithm, which can find many interesting solutions and is a good start-
ing point to even better algorithms, which will be certainlycreated as further steps of
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our research, because our general data mining platform opens the gates to easy imple-
mentation of advanced meta-learning techniques, capable of gathering and exploiting
meta-knowledge.

2 Complexity controlled meta-learning process

The space of potential solutions is usually very huge, but itdoes not mean that experts
should be more effective than dedicated meta-learning algorithms which search through
the model space in intelligent ways. From the other side, even the most advanced expert
is limited in some ways—it can be seen for instance when browsing the difference of
quality of solutions, presented by experts in competitionsin the area of computational
intelligence.

The algorithm, presented below, can find solutions to different kinds of compu-
tational intelligence problems like classification, approximation, prediction, etc. Also,
it may optimize different criteria, the selection of which,usually depends on the task
which is to be solved. The solutions generated by our algorithm may be of simple
or complex structure. They are searched for in a uniform process controlled with real
complexity of algorithms (learning machines). Note that a single machine is not al-
ways of smaller complexity than another one of more complex structure, but composed
of submachines of small complexities. The complexity basedcontrol of meta-learning
processes is of highest importance, because it helps avoid some traps which could crush
the whole learning process.

Given a dataset representing the problem and a goal criterion, some learning ma-
chines can find a solution (with different efficiency and accuracy) but for some oth-
ers the problem may be unsolvable (for example, may encounter convergence troubles
because of their stochastic behavior, typical for some neural networks). Moreover, in
accordance with insolvability of the halting problem, somelearning processes may be
infinite. The meta-learning algorithm, we propose, deals successfully also with such
cases.

Our solution to these problems was inspired by the definitionof complexity by
Levin [8, 9]:

CL(P ) = min
p

{cL(p) : p is a program which solvesP}, (9)

whereP is the problem to be solved and

cL(p) = l(p) + log(t(p)), (10)

l(p) is the length of the programp andt(p) is the time in whichp solvesP .
In more advanced meta-learning the Eq. 10 may be substitutedby

cNiK(p) = [l(p) + log(t(p))] · q(p), (11)

whereq(p) is a function term responsible to reflect the inverse of an estimate of relia-
bility of p, andp denotes a learning machine (or a submachine) (the same applies to Eq.
9 when it is adapted to computational intelligence problems).
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The main idea of the algorithm is to iterate in the main loop through theprograms
(algorithms, learning machines), constructed by a system ofmachine generators (de-
scribed below), in the order of their complexity measured with Eq. 11 or, in a simplified
version, with Eq. 10. In fact, the complexity which is used bythe meta-learning algo-
rithm to order machines, is a sum of two complexities: the first for the learning part
and the second for thetest part.

In general, our meta-learning algorithm may be seen as a loopof test estimation
trials with a complexity control mechanism. Each generatedmachine is nested in the test
procedure (adequate for the problem type and configured goal), then the test procedure
starts and the loop supervises whether the complexity of thetask does not exceed current
complexity threshold.

An outline of the meta-learning algorithm may be presented as:

1 procedure ML;
2 whi le ( stop_condition != true )
3 {
4 start tasks if possible
5 check the complexity of running tasks
6 analyze finished tasks
7 }

The following subsections describe details of subsequent parts of this algorithm.

2.1 The stopping condition of the loop

As long as machines are generated by machine generators, themain loop may continue
the job. However the process may be stopped for example when the goal is obtained
(remember, that the goal may depend on the problem type and onour preferences). We
may wish to:

– find thebest model in given time for given dataset,
– find thebest model satisfying a goal condition with given thresholdθ,
– find thebest model satisfying a goal condition with given thresholdθ, and of as

simple structure as possible,
– find severalbest models which can be used as complementary and which satisfy a

goal condition with given thresholdθ,
– stop when the progress of objective function (test criterion) is smaller than a givenε.

Also the term ofbest model (or rather ofbetter model) may be defined differently
(based on several concepts), however it is the simpler part of the algorithm. It is impor-
tant to see that stopping criterion is not a problem itself—we just need to declare our
preferences.

2.2 Starting new tasks

Line number 4 of the procedure ML is devoted to starting new tasks. The algorithm
keeps the started tasks in a special queueQ of a specified, limited size. A new task can
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be added only if the number of tasks inQ is smaller than the limit. The tasks inQ may
run in parallel.

The tasks are constructed on the basis of machine configurations obtained from a
set of generators. The procedure always gets the machine of the smallest estimated
complexity, according to Eq. 11 or 10, considering all active generators (a meta-learner
may change the set of machine generators up to its needs). Theselected machine or
rather its configuration is nested in a task which performs a test of the machine, for
example in a cross-validation test. The type of the test and its parameters is also a subject
to configuration. If the complexity of selected machine was not bigger thancurrent
complexity level, the current complexity is set to the maximum of current complexity
and complexity of selected machine1.

The outline of the procedure starting new tasks looks like:

1 procedure start tasks if possible;
2 whi le ( started tasks count< limit )
3 {
4 m := find machine of simplest complexity in generators set
5 form new test task t for machine m
6 add t to Q
7 current_complexity := max(current_complexity, complexity_of(m) )
8 }

The crucial role in the above symbolic code, plays the set of machine genera-
tors which is a source of machine configurations. Different machine generators may
form significantly different solution spaces. Machine generators are also strongly goal–
dependent (depend on the problem type and the criterion usedfor testing). The machine
generators are asked to present or give single machines of the smallest complexity, one
by one. The meta-learning procedure selects a machine of smallest complexity among
the results obtained from all the generators. All of these ideas are realized very effi-
ciently using appropriate data structures.

To enable the calculation ofmachine complexity, for each machine, there is a func-
tion estimating the complexity on the basis of the machine configuration and the inputs
it gets. In the case, when the estimation is not possible, thecomplexity is approximated
from averaged past observation of the behavior of the methodon different inputs. In
both cases the estimated complexity is additionally weighted to obtain similar runtime
behavior of machines which declare the same (or very similar) complexity.

The goal of using a set of generators instead of a single generator was that it is sim-
pler to define severaldedicated generators, than a single universal one for any type of
tasks. The generators may form different levels of abstractions in machines construc-
tion. They may be more or less sophisticated and produce moreor less complex ma-
chines. The meta-learner may exchange results of the explorations between generators,
integrating the possibilities of generators. The generators may be added or removed,
during meta-learning, according to the needs of the ML procedure. They may also ad-
just their behavior to the knowledge collected while learning, to produce new machines,
more adequate to the experience, providing lowerq(p) of Eq. 11.

1 It can not be simply set to the complexity of selected machinebecause it may happen (from
different reasons) that a generator generates a new machineof smaller complexity.
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2.3 Complexity control of running tasks

The tasks which are running, must be checked whether they don’t consume more time
or memory than planned. All tasks are supervised, because otherwise, some of them
could use too much time and block the resources for other tasks. When the (realized/-
consumed) complexity of a task exceeds the threshold calculated on the basis of the
value ofcurrent_complexity, the task is stopped and removed from the tasks queueQ.
The estimated complexity of such task is increased with a fixed factor or according to
the estimated progress of the task and the task is moved to thequarantine. If possi-
ble, (it depends on implementation of given machine) the task state is saved (outside
of memory) to be restarted from the stopping-point, whencurrent_complexitygets ad-
equately large. Thus, the quarantine plays the role of a machine generator, which stores
the stopped tasks, for future use.

Similarly to the idea of machine examination in the order of increasing complexity,
braking too complex processes resembles what human expertsdo when searching for
attractive models, but here, instead of the fuzzy criterionof expert’s patience we have a
formal complexity-based test.

2.4 Analysis of finished tasks

Each finished task is removed from the task queueQ and the estimated quality of
the tested machine, together with machine configuration andthe results of learning,
is moved toresults repository. Partial results (current ranking of models) are available
in real time (e.g. accessible from GUI).

All finished tasks help find more and more interesting solutions. Even if they do not
provide very attractive solutions, they are a source of somemeta-knowledge, helpful in
further exploration, for example in estimation of the reliability of machines created by
active generators for next generations. This information is very useful for adjustment
of q(p) from Eq. 11, which has crucial influence on the ordering of generated ma-
chines. For instance, if it is found, that a combination of given feature selection method
works well with some classifier, we may promote such submachine structures in new
machines.

2.5 Examples of machine generators

The simplest form of a machine generator is the one providinglearning machines con-
figuration from a predefined set. Such a generator must be capable of pointing to the
simplest machine in the set. The same generator is used by ourmeta-learning algorithm
to realize thequarantine for too complex machines.

The generators are free in the choice of knowledge used to generate machines. The
scheme based generator (SBG) was designed to produce new machines usingmeta-
schemes. A meta-scheme is a template which defines how to build structures of ma-
chines. Some examples of meta-schemes are presented in figures 2, 3 and 4. Meta-
schemes may contain machines, placeholders for machines and connections between
machines inputs and outputs. SBGs fill the meta-schemes withparticular machines pro-
vided in some sets obtaining complex machines. The fact thatthe structure is more
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Fig. 2. A meta-scheme of data
transformation and classifica-
tion.

Fig. 3. A meta-scheme of fea-
ture selection transformation
with placeholder for ranking
machine.

Fig. 4. A meta-scheme of
a committee machine with
placeholder for a number
of classifiers and decision
module.

complex, does not imply a higher complexity of such new machine. Imagine a machine
composed of a feature selection and a classifier (by filling the meta-scheme of figure 2).
It may happen that the complexity of the feature selection issmall and the transfor-
mation leaves small amount of features in the output dataset. The classifier trained on
transformed data may have much smaller complexity, becauseof the dimensionality
reduction, and final complexity of such composite model may be significantly lower
than the complexity of the same classifier, when not precededby the feature selection
machine. This is a very important feature of our algorithm, because it facilitates find-
ing solutions, even when the base algorithms are too complex, if only some compound
machines can solve the problem effectively.

The meta-scheme of figure 2 enables creating machines which consist of any dataset
transformation method and any classification machine. The choice of data transforma-
tion depends on initial configuration but also on newly produced machines. Note that
such compound, as a product of the meta-scheme, forms another classifier and it may
be nested in another scheme. Also the transformation placeholder of this scheme may
be filled directly by a data transformer or by an instance of a scheme which plays the
role of dataset transformer (for example the meta-scheme offigure 3). The SBG type
of generators should avoid producing tautology or nonsense(from computational intel-
ligence point of view), however, in general, it is impossible to prevent the generators
from providing unnecessary or useless (sub-)solutions.

Figure 3 presents a meta-scheme dedicated to feature selection. The role of the rank-
ing machine (the placeholder) is to determine the importance order of features and the
feature selection machine performs the selection of the topranked features. A filled
instance of that scheme may be nested in the previous meta-scheme to compose a clas-
sifier preceded by the feature selection. Each machine generator may have its own tactic
for building/composing new machines. Especially the generator which composes ma-
chines from meta-schemes can be realized in a number of ways.
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Figure 4 presents a general meta-scheme of a committee model. The classifiers can
be inserted in the classifiers placeholder and a decision module in the other placeholder
(it may be a voting/weighting/WTA or any other kind of decision module).

Another very important machine generator may be seen as a sub-meta-learning and
is devoted to search for optimal (or close to optimal) configuration parameters for a
given machine (including complex structures of machines).This machine generator pro-
duces a specialized test machine (meta parameter search machine) to search formeta
parameters. By meta parameters of given machine we mean its configuration parame-
ters which are declared to be searched automatically. Such parameters can be described
by their types, interval of acceptable values, default values, interval of recommended
values, recommended search strategy, etc. A meta parametersearch machine tests given
machine using one of several search strategies. The strategy should reflect behavior of
the meta-parameter (linear, logarithmic, exponential or nominal). We have implemented
several search strategies for 1D and 2D. The description of meta-parameters and their
search methods provide a very interesting knowledge for theparameters search au-
tomation. The knowledge may be used by a machine generator toproduce a series of
independent machines and efficiently explore the space of possible machine configura-
tions.

2.6 How it all works together

Meta-learning based on machine generators is a search process similar to what human
experts do when analyzing data. The machine generators construct machines according
to figures 2–4. The generated machines are validated in proper order. The simplest
machines are constructed by some substitutions to the meta-scheme of figure 2. One
of the simplest transformations is data standardization, another one removes useless
features with the filter of invariance2. They fit the first placeholder in the meta-scheme.
Replacing the second box by a Naive Bayesian Classifier (NBC)3 results in the instance
of the meta-scheme of one of the smallest possible complexity. Thus, NBC trained on
simply filtered data is one of the first candidate validated.

Not all the instances of this meta-scheme are so simple. We can also use Princi-
pal Components Analysis (PCA) as data transformation and a version of kNN with
automated adjustment of k, obtaining quite computationally complex instance of the
meta-scheme. Because of its large complexity, such machineis not tested at the very
beginning of the search. It may get into the queue, even behind some models of more
complex structure (for example composed of a data normalization, a simple feature
selector and a classifier), but with more attractive time complexity prediction.

The complexity control also facilitates withdrawal of somemethods, when their
adaptive processes take too much time. It is quite natural, that for example a Support
Vector Machine (SVM) training may be very difficult, when runon raw data, but after
some feature selection, or other data transformation, the optimization process is very
fast. In such cases the SVM which has been running for some time without success, is

2 It removes each feature, which variance is equal to zero.
3 Our implementation of NBC works with both nominal and continuous features.
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withdrawn, and other machines are tried. Otherwise, problematic machines could block
the whole meta-learning.

The recursive nature of the meta-scheme presented in figure 4facilitates taking ad-
vantage of what has been learned in the earlier stages of the search—the most successful
(and most different) methods may be easily put into a committee to obtain even better
or more stable results. It is not necessary to learn everything from scratch, when we
start searching for committees, it is enough to combine the decisions of already created
models, which may save a lot of time.

It is also worth to notice, that evolutionary algorithms maybe very easily imple-
mented within our framework—it is enough to implement a machine generator capable
of producing next generations and define the fitness functionwhich will serve as the
meta-learning validation criterion.

Small number of simple machine generators allows us to create quite complex
machines and search for optimal configuration of their components. Experts meta-
knowledge used to define an adequate set of meta-schemes and the mechanism of com-
plexity control significantly reduce the search space, while not resigning from the most
attractive solutions.

Obviously, providing unreasonable machine generators (for example generating very
large number of similar machines of simple structure but poorly performing) or mislead-
ing complexity estimators, may easily spoil the whole meta-learning process, so all the
components of the algorithm must be carefully selected.

3 Summary

We have presented a meta-learning algorithm based on machine generators and com-
plexity control. Using meta-schemes restricts testing to only such machine architec-
tures, that we regard as sensible. Our definition of machine (and model) complexity,
and the mechanisms for their estimation (before starting adaptive processes) and con-
trol (during their runs), facilitate testing machines in proper order. Validating candi-
date machines in the order of increasing complexity guarantees success in the pursuit
for suboptimal models—if there is an accurate structure (compatible with the meta-
schemes), then it will be found in a finite time, for the same reasons, for which the
breadth first search successfully explores possibly infinite trees.

Our system supplies tools for easy meta-level activity, so that meta-knowledge may
be easily extracted from data mining projects. Our algorithm collects such information
to improve further search stages, for more efficient selection of committee members etc.
More advanced methods for collecting, exchange and exploiting meta-knowledge will
be one of our most important interests in the future.
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