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Abstract. We present a novel approach to meta-learning, which is reitgu
ranking of methods, not just a strategy for building modehuoattees, but an
algorithm performing a search similar to what human expgwte/hen analyzing
data, solving full scope of data mining problems. The setinaugh the space of
possible solutions is driven by special mechanisms of nmacgenerators based
on meta-schemes. The approach facilitates using humantsxp®wwledge to
restrict the search space and gaining meta-knowledge int@mmated manner.
The conclusions help in further search and may also be pdsseither meta-
learners. All the functionality is included in our new geslearchitecture for data
mining, especially eligible for meta-learning tasks.

1 Introduction

Meta-learning is learning how to learn. In order to perform meta-level gsialoflearn-
ing from data one needs a robust system for different kinds of learning witiform
management of miscellaneous learning machines and thaittse Our data mining
system is an implementation of a very general view of leaymvachines and models.
Thereforeitis very flexible and eligible for sophisticatadta-level analysis of learning
processes.

A learning problem can be defined a® = (D, M), whereD C D is alearning
dataset and.M is amodel space.

In computational intelligence attractive modelse M are determined with learn-
ing processs:

L?: D — M, 1)

wherep defines the parameters of the learning machine. This vieeashing encircles
many different approaches of supervised and unsupervsedihg including classi-
fication, approximation, clustering, finding associatiets. Such definition does not
limit the concept of search to specific kinds of learning rod#hlike neural networks
or statistical algorithms, however such reduction of magelce is possible in practice.
In real life problems, sensible solutions € M are usually so complex, that it is
very advantageous to decompose the given protlem (D, M) into subproblems:

[P1,...,Pn] 2



whereP; = (D;, M;). In this way, the vector of solutions of the problefAsconsti-
tutes a model for the main problept

m:[mla"'amn]a (3)
and the model space gets the form
M=Myx...x M,. 4

In practice M is usually a subspace 01, x --- x M,, because the submachines
may extract not only the component needed for the main magatehllso some other
information. It is not a problem, because in such cases, tlaéfiodel is just a simple
projection of the whole complex model.

The solution constructed by a decomposition is often muskee#o find, because
the main task gets reduced to a series of simpler tasks: modslving the subproblem
P;, is the result of a learning process

LY Dy — M, i=1,...,n, (5)
where
D, = H My, (6)
keK;

andK; C {0,1,...,i—1}, Mo = D. It means that the learning machif® may take

advantage of some of the models,, ..., m;_; learned by preceding subprocesses
and of the original datasd? of the main problen®. Naturally, also parametegs=
(pla e ap'n.)

So, the main learning proces$ is decomposed to the vector
[LP, ..., LEr]. 7

Such decomposition is often very natural: a standardigaideature selection nat-
urally precedes classification, a set of classifiers precedemmittee module etc. Note
that, the subprocesses need not to be dependent on all prg@setlprocesses, so such
decomposition has natural consequences in the possilifijigrallelization of problem
solving.

A real life example of a learning process decomposition esented in figure 1,
where a classification committee is constructed, but merolassifiers need the data
transformed before they can be applied. The structure gifittject directly corresponds
to both the learning process and the final model decompuosikite rectangle including
all small boxes but “Data”, depicts the whole learning pss;evhich, given dataset, is
expected to provide a classification routine. For diffeteéntls of analysis like testing
classification accuracy etc. it must be treated as a whotdrdam the formal point of
view each inner rounded rectangle is a separate procesagdh/task and providing
its model.

Because each DM process is a directed acyclic graph, it isteashow the com-
posite process and composite model it corresponds to. Thielnod figure 1 may be
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Fig. 1. An example of a DM project.

decomposed as
Mrfe = Lyfe(Data)

Mstd - Lstd (mrfe)

Mnbe = Lnbc(mstd)

Mdiser = Ldiscr (mstd) (8)
Mgz = Liaz(Mdiscr)

Mdtc - Ldtc(mstd)

Mknn = Lknn (mdtc)

Mecomm = Lcomm(mnbca mids3, mknn)

The subscripts are easy to decode, when compared to the figieeh of the compo-
nents learns some part of the final model, which has a comeksipg structure.

Such general and uniform foundations of our DM system fatéisolving problem
of any kind, requiring any structural complexity, provideppropriate components. It
is especially important when undertaking meta-learnirglenges, where we must try
many different methods, from simple ones to those of largeptexity. Nontriviality
of model selection is evident when browsing the results @®P003 Challenge in
Feature Selection [1, 2] or WCCI Performance Predictionli€éhge [3] in 2006.

Some meta-learning approaches [4—7] are based on datatsharation techniques
(characteristics of data like the numbers of featurestrefitlasses, features variances,
information measures on features, also from decision teée$ or onlandmarking
(machines are ranked on the basis of simple machines peafaes before starting the
more power consuming ones). Although the projects areyr@airesting, they still
may be done in different ways or, at least, may be extendeshresispects. The whole
space of possible and interesting models is not browsedsoughly by the mentioned
projects, thereby some types of solutions can not be foutidthiem.

In our approach the termeta-learning encompasses the whole complex process of
model construction including adjustment of training paedens for different parts of the
model hierarchy, construction of hierarchies, combiningpsllaneous data transforma-
tion methods and other adaptive processes, performinglmalittation and complexity
analysis, etc.

This article presents some details of the structure andifumality of a meta-learning
machine, naturally implemented within the architecturewfrecently created system.
Itis an efficient algorithm, which can find many interestiofusions and is a good start-
ing point to even better algorithms, which will be certaichgated as further steps of



our research, because our general data mining platformsdpergates to easy imple-
mentation of advanced meta-learning techniques, capédlgatbering and exploiting
meta-knowledge.

2 Complexity controlled meta-learning process

The space of potential solutions is usually very huge, bddés not mean that experts
should be more effective than dedicated meta-learningigthgos which search through
the model space in intelligent ways. From the other siden #ve most advanced expert
is limited in some ways—it can be seen for instance when braythe difference of
quality of solutions, presented by experts in competitiorthe area of computational
intelligence.

The algorithm, presented below, can find solutions to diffierkinds of compu-
tational intelligence problems like classification, appneation, prediction, etc. Also,
it may optimize different criteria, the selection of whiaksually depends on the task
which is to be solved. The solutions generated by our algorimay be of simple
or complex structure. They are searched for in a uniformgsscontrolled with real
complexity of algorithms (learning machines). Note thairgle machine is not al-
ways of smaller complexity than another one of more comptieicture, but composed
of submachines of small complexities. The complexity bag®drol of meta-learning
processes is of highest importance, because it helps amwid saps which could crush
the whole learning process.

Given a dataset representing the problem and a goal crites@me learning ma-
chines can find a solution (with different efficiency and aecy) but for some oth-
ers the problem may be unsolvable (for example, may encoootwergence troubles
because of their stochastic behavior, typical for somealewetworks). Moreover, in
accordance with insolvability of the halting problem, sole&ning processes may be
infinite. The meta-learning algorithm, we propose, deatsssfully also with such
cases.

Our solution to these problems was inspired by the definiibecomplexity by
Levin [8,9]:

Cr(P) = min{cr(p) : pis a program which solveB}, 9)
p

whereP is the problem to be solved and

cr(p) = l(p) + log(t(p)), (10)

I(p) is the length of the programandt(p) is the time in whictp solvesP.
In more advanced meta-learning the Eq. 10 may be substibyted

enik (p) = [l(p) + log(t(p))] - a(p), (11)

whereq(p) is a function term responsible to reflect the inverse of aimese of relia-
bility of p, andp denotes a learning machine (or a submachine) (the samespplq.
9 when it is adapted to computational intelligence problems
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The main idea of the algorithm is to iterate in the main loaptiyh theprograms
(algorithms, learning machines), constructed by a system ofachine generators (de-
scribed below), in the order of their complexity measureith\iiq. 11 or, in a simplified
version, with Eq. 10. In fact, the complexity which is usedthg meta-learning algo-
rithm to order machines, is a sum of two complexities: the fos the learning part
and the second for thest part.

In general, our meta-learning algorithm may be seen as adbdgst estimation
trials with a complexity control mechanism. Each generatadhine is nested in the test
procedure (adequate for the problem type and configured,gbeh the test procedure
starts and the loop supervises whether the complexity déiedoes not exceed current
complexity threshold.

An outline of the meta-learning algorithm may be presented a

procedure ML;
while ( stop_condition!=true )

{
start tasks if possible
check the complexity of running tasks
analyze finished tasks

}
The following subsections describe details of subsequarts pf this algorithm.

2.1 The stopping condition of the loop

As long as machines are generated by machine generatorsathéoop may continue
the job. However the process may be stopped for example wteegdal is obtained
(remember, that the goal may depend on the problem type andrqureferences). We
may wish to:

— find thebest model in given time for given dataset,

— find thebest model satisfying a goal condition with given threshdld

— find the best model satisfying a goal condition with given threshdldand of as
simple structure as possible,

— find severabest models which can be used as complementary and which satisfy a
goal condition with given threshol

— stop when the progress of objective function (test critéris smaller than a given

Also the term otbest model (or rather ofbetter model) may be defined differently
(based on several concepts), however it is the simpler pérealgorithm. It is impor-
tant to see that stopping criterion is not a problem itselfejust need to declare our
preferences.

2.2 Starting new tasks

Line number 4 of the procedure ML is devoted to starting neskgaThe algorithm
keeps the started tasks in a special qugu# a specified, limited size. A new task can
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be added only if the number of tasks@his smaller than the limit. The tasks ¢p may
run in parallel.

The tasks are constructed on the basis of machine confignsabibtained from a
set of generators. The procedure always gets the machirfeeafnhallest estimated
complexity, according to Eq. 11 or 10, considering all actjenerators (a meta-learner
may change the set of machine generators up to its needskéeldeted machine or
rather its configuration is nested in a task which performesa ¢f the machine, for
example in a cross-validation test. The type of the test@mqmhirameters is also a subject
to configuration. If the complexity of selected machine was lbigger thancurrent
complexity level, the current complexity is set to the maximum of cuti@mplexity
and complexity of selected machine

The outline of the procedure starting new tasks looks like:

procedure start tasks if possible
while ( started tasks count limit )

{

m := find machine of simplest complexity in generators set

form new test taskt for machinem

add t to Q

current_complexity:= max(current_complexity, complexity i) )

}

The crucial role in the above symbolic code, plays the set athine genera-
tors which is a source of machine configurations. Differeachine generators may
form significantly different solution spaces. Machine gaers are also strongly goal—
dependent (depend on the problem type and the criterionfastebting). The machine
generators are asked to present or give single machines efithllest complexity, one
by one. The meta-learning procedure selects a machine diestneomplexity among
the results obtained from all the generators. All of thesagdare realized very effi-
ciently using appropriate data structures.

To enable the calculation ofiachine complexity, for each machine, there is a func-
tion estimating the complexity on the basis of the machindigaration and the inputs
it gets. In the case, when the estimation is not possiblesah@plexity is approximated
from averaged past observation of the behavior of the metmodifferent inputs. In
both cases the estimated complexity is additionally weighib obtain similar runtime
behavior of machines which declare the same (or very sijrdtamnplexity.

The goal of using a set of generators instead of a single gwrevas that it is sim-
pler to define severaledicated generators, than a single universal one for any type of
tasks. The generators may form different levels of abstmastin machines construc-
tion. They may be more or less sophisticated and produce ordess complex ma-
chines. The meta-learner may exchange results of the extjglos between generators,
integrating the possibilities of generators. The genesateay be added or removed,
during meta-learning, according to the needs of the ML pdace. They may also ad-
just their behavior to the knowledge collected while leagyto produce new machines,
more adequate to the experience, providing loygy of Eq. 11.

11t can not be simply set to the complexity of selected machieeause it may happen (from
different reasons) that a generator generates a new maafsngaller complexity.



2.3 Complexity control of running tasks

The tasks which are running, must be checked whether they ctorsume more time
or memory than planned. All tasks are supervised, becatlmsgvaise, some of them
could use too much time and block the resources for othest&8ken the (realized/-
consumed) complexity of a task exceeds the threshold eémlion the basis of the
value ofcurrent_complexitythe task is stopped and removed from the tasks q@eue
The estimated complexity of such task is increased with alffaetor or according to
the estimated progress of the task and the task is moved tqutrantine. If possi-
ble, (it depends on implementation of given machine) thk siiste is saved (outside
of memory) to be restarted from the stopping-point, wharrent_complexitgets ad-
equately large. Thus, the quarantine plays the role of a magfenerator, which stores
the stopped tasks, for future use.

Similarly to the idea of machine examination in the ordemafreéasing complexity,
braking too complex processes resembles what human exjmevibien searching for
attractive models, but here, instead of the fuzzy critedbexpert’s patience we have a
formal complexity-based test.

2.4 Analysis of finished tasks

Each finished task is removed from the task quéuand the estimated quality of
the tested machine, together with machine configurationthedesults of learning,
is moved toresults repository. Partial results (current ranking of models) are available
in real time (e.g. accessible from GUI).

All finished tasks help find more and more interesting sohgideven if they do not
provide very attractive solutions, they are a source of sorat-knowledge, helpful in
further exploration, for example in estimation of the rbiity of machines created by
active generators for next generations. This informatsowery useful for adjustment
of ¢(p) from Eqg. 11, which has crucial influence on the ordering ofegated ma-
chines. For instance, if it is found, that a combination efgifeature selection method
works well with some classifier, we may promote such subnmechkiructures in new
machines.

2.5 Examples of machine generators

The simplest form of a machine generator is the one providiaming machines con-
figuration from a predefined set. Such a generator must béleapépointing to the
simplest machine in the set. The same generator is used lmeatarlearning algorithm
to realize theguarantine for too complex machines.

The generators are free in the choice of knowledge used ®rgenmachines. The
scheme based generator (SBG) was designed to produce new machines usietp-
schemes. A meta-scheme is a template which defines how to build strastof ma-
chines. Some examples of meta-schemes are presented iesfiguB8 and 4. Meta-
schemes may contain machines, placeholders for machimescamections between
machines inputs and outputs. SBGs fill the meta-schemespaititular machines pro-
vided in some sets obtaining complex machines. The facttheastructure is more
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Fig.4. A meta-scheme of

Fig. 3. A meta-scheme of fea-a committee machine with

Fig. 2. A meta-scheme of datature selection transformationplaceholder for a number

transformation and classifica-with placeholder for ranking of classifiers and decision
tion. machine. module.

complex, does not imply a higher complexity of such new maehimagine a machine
composed of a feature selection and a classifier (by filliegitleta-scheme of figure 2).
It may happen that the complexity of the feature selectiosngll and the transfor-
mation leaves small amount of features in the output databet classifier trained on
transformed data may have much smaller complexity, becaluiee dimensionality
reduction, and final complexity of such composite model maysignificantly lower
than the complexity of the same classifier, when not precegdte feature selection
machine. This is a very important feature of our algorithegduse it facilitates find-
ing solutions, even when the base algorithms are too comiplexly some compound
machines can solve the problem effectively.

The meta-scheme of figure 2 enables creating machines winndist of any dataset
transformation method and any classification machine. Tiogce of data transforma-
tion depends on initial configuration but also on newly prasilimachines. Note that
such compound, as a product of the meta-scheme, forms amtdlssifier and it may
be nested in another scheme. Also the transformation pdéaehof this scheme may
be filled directly by a data transformer or by an instance afteeme which plays the
role of dataset transformer (for example the meta-schenfigufe 3). The SBG type
of generators should avoid producing tautology or nonséfin@@ computational intel-
ligence point of view), however, in general, it is impossilb prevent the generators
from providing unnecessary or useless (sub-)solutions.

Figure 3 presents a meta-scheme dedicated to featureigelddte role of the rank-
ing machine (the placeholder) is to determine the impodander of features and the
feature selection machine performs the selection of theaoged features. A filled
instance of that scheme may be nested in the previous mie¢girecto compose a clas-
sifier preceded by the feature selection. Each machine gemenay have its own tactic
for building/composing new machines. Especially the gatwerwhich composes ma-
chines from meta-schemes can be realized in a number of ways.



Figure 4 presents a general meta-scheme of a committee nidwetlassifiers can
be inserted in the classifiers placeholder and a decisiomfadathe other placeholder
(it may be a voting/weighting/WTA or any other kind of deoisimodule).

Another very important machine generator may be seen as-mstdlearning and
is devoted to search for optimal (or close to optimal) configjon parameters for a
given machine (including complex structures of machinBs)s machine generator pro-
duces a specialized test machineeta parameter search machine) to search fometa
parameters. By meta parameters of given machine we mean its configuratoame-
ters which are declared to be searched automatically. Sarelmpeters can be described
by their types, interval of acceptable values, default @slunterval of recommended
values, recommended search strategy, etc. A meta paraseateh machine tests given
machine using one of several search strategies. The strshegld reflect behavior of
the meta-parameter (linear, logarithmic, exponentiabonimal). We have implemented
several search strategies for 1D and 2D. The descriptionetd+parameters and their
search methods provide a very interesting knowledge forpdrameters search au-
tomation. The knowledge may be used by a machine generapotiuce a series of
independent machines and efficiently explore the spacesdilple machine configura-
tions.

2.6 How it all works together

Meta-learning based on machine generators is a searchsgrsiceilar to what human
experts do when analyzing data. The machine generatorggoimachines according
to figures 2—4. The generated machines are validated in payder. The simplest
machines are constructed by some substitutions to the sebtame of figure 2. One
of the simplest transformations is data standardizatiootteer one removes useless
features with the filter of invarianéeThey fit the first placeholder in the meta-scheme.
Replacing the second box by a Naive Bayesian Classifier (RB&S)lts in the instance
of the meta-scheme of one of the smallest possible complé&tius, NBC trained on
simply filtered data is one of the first candidate validated.

Not all the instances of this meta-scheme are so simple. Weals® use Princi-
pal Components Analysis (PCA) as data transformation andrsion of kNN with
automated adjustment of k, obtaining quite computatignadimplex instance of the
meta-scheme. Because of its large complexity, such machinet tested at the very
beginning of the search. It may get into the queue, even dedume models of more
complex structure (for example composed of a data nornmalizaa simple feature
selector and a classifier), but with more attractive time jglexity prediction.

The complexity control also facilitates withdrawal of somethods, when their
adaptive processes take too much time. It is quite naturat,for example a Support
Vector Machine (SVM) training may be very difficult, when ran raw data, but after
some feature selection, or other data transformation, phienczation process is very
fast. In such cases the SVM which has been running for someeiithhout success, is

2 |t removes each feature, which variance is equal to zero.
% Our implementation of NBC works with both nominal and contios features.
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withdrawn, and other machines are tried. Otherwise, proate machines could block
the whole meta-learning.

The recursive nature of the meta-scheme presented in figialidates taking ad-
vantage of what has been learned in the earlier stages afdinets—the most successful
(and most different) methods may be easily put into a conemiib obtain even better
or more stable results. It is not necessary to learn evenytiitom scratch, when we
start searching for committees, it is enough to combine #uistbns of already created
models, which may save a lot of time.

It is also worth to notice, that evolutionary algorithms nizy very easily imple-
mented within our framework—it is enough to implement a niaelgenerator capable
of producing next generations and define the fitness funetisich will serve as the
meta-learning validation criterion.

Small number of simple machine generators allows us to ergaite complex
machines and search for optimal configuration of their camepés. Experts meta-
knowledge used to define an adequate set of meta-schemédseamdt¢hanism of com-
plexity control significantly reduce the search space, @hdt resigning from the most
attractive solutions.

Obviously, providing unreasonable machine generatoreffample generating very
large number of similar machines of simple structure butlyquerforming) or mislead-
ing complexity estimators, may easily spoil the whole metrning process, so all the
components of the algorithm must be carefully selected.

3 Summary

We have presented a meta-learning algorithm based on neagkimerators and com-
plexity control. Using meta-schemes restricts testingrity auch machine architec-
tures, that we regard as sensible. Our definition of macldnd (nodel) complexity,
and the mechanisms for their estimation (before startiraptiee processes) and con-
trol (during their runs), facilitate testing machines iroper order. Validating candi-
date machines in the order of increasing complexity guasmsuccess in the pursuit
for suboptimal models—if there is an accurate structurenfezatible with the meta-
schemes), then it will be found in a finite time, for the samasoms, for which the
breadth first search successfully explores possibly iefinges.

Our system supplies tools for easy meta-level activityhst ineta-knowledge may
be easily extracted from data mining projects. Our algaritiollects such information
to improve further search stages, for more efficient selacif committee members etc.
More advanced methods for collecting, exchange and expdaiteta-knowledge will
be one of our most important interests in the future.
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