
----- Problem 1: Additive Decomposition -----

You are to read a series of input lines, each containing two integers; call these integers
"sum" and "terms" for reference. "Sum" will be right justified in the first two columns of
the
input line, column three will be blank, and "terms" will be right
justified in the fourth and fifth columns. For each pair of
"sum" and "terms" you are to print a line containing the values of "sum" and "terms" and
the number of different ways that "sum" man be represented as the sum of "terms"
positive integers.

For example, six may be represented as the sum of one positive integer in only one way,
namely 6; six may be represented as the
sum of two positive integers in three different ways: 5+1, 4+2, and 3+3. (Notice that 2+4
is not essentially different from
4+2.) For this example, your program would produce a line of
output similar to the following:

6 MAY BE REPRESENTED AS THE SUM OF 2 INTEGERS IN 3 WAYS

Your program should read pairs of integers and produce output
until a pair of integers is read where "sum" = 0 and "terms" = 0;
you then stop.

You may assume that the input values are within the following
bounds:
0 < "sum" < (31-"terms")
0 < "terms" < 11

----- Problem 2: Automatic Spelling Correction -----

Studies have shown that the most common kinds of spelling errors
made by users of text editors or word processing systems are
often typing errors, specifically:

(1) transposing two adjacent letters
(2) mistyping one letter
(3) omitting one letter

With the aid of a dictionary, word processing systems can often
detect and automatically correct these kinds of spelling errors.
You are to write a program that does part of the job of locating
spelling errors, namely recognizing the three kinds of errors
described above. For this problem, a "word" will consist of 1 to
10 upper case alphabetic characters, and each input word will

begin on a new line, in column 1.

The input will contain first up to 100 words; these will
constitute the "dictionary". The dictionary words will be
terminated by an input line with an asterisk (*) in column 1 and
blanks in columns 2 to 10.

After the dictionary lines will be words whose spelling is to be
checked. For each of these words, first print the word being
checked, at the beginning of a new line, and then print one or
more messages about it, chosen from the following:

If the word is in the dictionary correctly spelled, print
CORRECT and proceed immediately to the next input word.

If the word is not in the dictionary, then find each word
in the dictionary for which the given word mifht be a
misspelling. Print as many of the following messages as
are appropriate:

TWO LETTERS TRANSPOSED IN word
ONE LETTER DIFFERENT FROM word
ONE LETTER OMITTED FROM word

Note that two or more of these messages might be
appropriate, and that one message might apply for more
than one dictionary word. Print all messages that are
valid. In each case, the "word" in the messages above is
the word in the dictionary. These message should be
printed one per line.

If none of these messages is appropriate, print UNKNOWN.

All messages should be indented four spaces. Continue reading
words and printing messages until you reach an end of file
condition for the input file.

----- Problem 3: Bugs -----

The notorious scarfing bug (of the order hemiptera, scientific
name Eatibus anythingus), native of northern New Jersey, exhibits
an interesting behavior around others of its species. When
placed on a flat surface with another bug in its sight, it
proceeds to walk at a constant speed directly toward the other
bug in an attempt to catch and eat it. If the second bug has
a third bug in its sight, it does the same thing; similarly
for the third bug. When several bugs are placed on a surface
together, they proceed along a (usually) curved path toward

another moving bug.

For this problem, you will be given the starting coordinates of
several bugs, and you must determine where they end up. There
will be exactly four data set to process, each structured as
follows:

The first line contains an integer from 2 to 9 (inclusive)
in column 1, representing the number of bugs. The next
several lines (one line per bug in the order Bug1, ...,
BugN) contains two real numbers each, representing the x
and y coordinates, respectively of the starting positions
of the bugs. Each number will be in the range -9999.9 to
+9999.9, each will contain a decimal point and one digit
to the right, and they will be right justified in columns
1 through 8 and 9 through 16.

Each bug sees only the next higher numbered bug (the highest
numbered bug sees only bug number 1). Simultaneously, each takes
a step of length one unit directly toward the bug it sees. For
purposes of this problem, this continues until either:

(1) at least one bug reaches a position less than or equal to
one unit away from the bug it is stalking; or

(2) 100 steps have been taken

As soon as either of the above conditions exists, print:

two blank lines;
the number of steps taken;
the bug number and the final position (x and y

coordinates) of each bug, accurate to one decimal
place, one bug per line

Notice that after each step, each bug may need to change
direction, since its target bug is also moving. Notice also that
if the starting position of a bug is less than or equal to one
unit from its target, then no steps are taken.

----- Problem 4: Expanding Square Codes -----

One method of encoding messages is known as the "expanding square
code". This method encodes message by placing the character of
the message in an odd order square matrix row by row, and then
retrieving them in a clockwise expanding square spiral from the

center of the matrix. If the message is not exactly the right
length to fill the matrix, the rest of the matrix is filled with
asterisk characters (*).

For example, the two square matrices below show the order in
which the characters are placed in the matrix, and the order in
which they are retrieved. Notice that the order of retrieval
begins at the center, then proceed to the right, and then
spirals clockwise

Order In Order Out

1 2 3 4 5 21 22 23 24 25
6 7 8 9 10 20 7 8 9 10

11 12 13 14 15 19 6 1 2 11
16 17 18 19 20 18 5 4 3 12
21 22 23 24 25 17 16 15 14 13

Message In: "This is a test message!!"

Message Out: "stssees a a*!!egmtiThis "

Your program must be able both to encode and to decode messages
by this method. The input will consist of pairs of lines. The
first line in each pair will contain either the word ENCODE or
the word DECODE in upper case characters beginning in column 1.
The second line in each pair will consist of a message to be
encoded or decoded, containing a maximum of 72 characters.

From the length of the message, you should determine the minimum
odd order required for the matrix, and perform the specified
operation. The output for each operation will consist of one
blank line, the given message, and the resultant message. Each
message should be on a separate line, and each should be
appropriately labeled. A decoded message may not contain the
asterisk characters used to fill the matrix in the encoded
process. You may assume the no actual message ends with an
asterisk.

Your program should continue reading input lines and performing
operations until an operation other than ENCODE or DECODE is
encountered.

----- Problem 5: Honor Society Selection -----

Imatellin University has been granted a chapter of Upsilon Gamma
Eta, the national honor society for students in All-Night Bowling
Alley Management. Imatellin U. needs a program to select those
students who are eligible to join this august society. The
criteria are:

(1) 30 or more credit hours of courses attempted and a 3.0 or
higher grade point average in those courses, and

(2) 12 or more credit hours of Bowling Alley Management
courses attempted and a 3.25 or higher grade point average
in those courses.

The course history file for Imatellin U. students contains for
each student a contiguous group of 68-character records, each
containing the student's name in the first 20 characters
immediately followed by up to eight adjacent course entries. All
alphabetic characters are upper case.

Each 6-character course entry consists of a two-letter department
prefix (BM for Bowling Alley Management courses), a two-digit
course number, one digit specifying the number of credit hours
the course carries, and the letter grade received. Unused course
entries are all blanks.

Grade point averages are to be computed on a four-point basis
(A=4, B=3, C=2, D=1, F=0), weighted as usual by the number of
credit hours for each course. To keep its cherished
accreditation, Imatellin does not have any other grading basis
such as Pass/Fail, and every attempt at every course is included
in the grade point calculation.

Write a program to read a data file as described above, and list
the names of those students in the file who qualify for Upsilon
Gamma Eta.

An example student record group is given below.

KEGLAR, STAR PE014AHI013DMA024CBM014ASS223F
KEGLAR, STAR SS223CPE024AMA044DBM024AHI023DTX031D

----- Problem 6: Optimum Prefix Codes -----

For a given set of values, define a "code" as a set of symbols to
represent those values. A "symbol" is defined as a string of

digits chosen from the set 0, 1, ..., k-1. Not all symbols will
necessarily contain the same number of digits.

An "optimum prefix code" is a code with two properties:
(1) no symbol is the prefix of any other symbol
(2) all symbols are as short as possible

For example, a set of ten values may be coded with symbols chosen
from 0, 1 as:

0000 0001 010 011 100 101 110 111 0010 0011
This code has the two properties, and is therefore an optimum prefix
code.

The following example shows another way to code ten values with
symbols made up of 0, 1, but it does not have property (1) above.

0 1 00 01 10 11 000 001 010 011

The following example also shows a way to code ten values with
symbols made up of 0, 1, but it does not have property (2) above.

0 10 110 1110 11110 111110 1111110
11111110 111111110 1111111110

Your are to write a program that will find and print optimum
prefix codes. The input will consist of n, the number of values
to be represented, and k, the number of digits allowed in
symbols. These values will be integers with 2 <= n <= 100 and
2 <= k <= 8. The value of n will be right justified in columns 1 to 3,
and the value of k will be right justified in columns 4 to 6,
both on the same line. The above example has n = 10, k = 2.
There will be exactly 4 data sets.

For each data set, print the values of n and k, appropriately
labeled, and then the code symbols, with eight symbols per output
line (except perhaps the last line). The symbols may be printed
in any order

+
Notice that if the symbols of an _____/ ______
optimum prefix code are arranged in 0/ \1
a tree, with each level in the tree + +
adding on more digit to a symbol, ___/ __ _/ _
then an optimum prefix code has the 0/ \1 0/ \1
minimum number of levels, and every + + + +
symbol corresponds to a leaf node _/ _ / \ / \ / \
of the tree. The first code 0/ \1 0/ \1 0/ \1 0/ \1
example above is shown in the + + + + + + + +
diagram. 0/ \1 0/ \1

+ + + +

----- Problem 7: Bridge Point Counting -----

A "hand" in bridge consists of 13 cards. Bidding begins by adding the point value of the
hand and then bidding if it is appropriate.

You are to write a program which will input the 13 cards in a bridge hand and then
calculate the point value of the hand. Each card is represented by two two-digit numbers.
Each number is separated trom the preceding number by one blank. The first number
specifies the rank of the card: 1=ace, 2=deuce, ..., 10=ten, 11=jack, 12=queen, 13=king.
The second number specifies the suit: 1=clubs, 2=diamonds, 3=hearts, 4=spades. Thus:

9 3 = 9 of hearts
1 2 = ace of diamonds

13 4 = king of spades
The values representing the thirteen cards of a hand will all be on the same
input line, alternating rank, suit, ..., rank, suit.

Calculate the point value of a hand by using the following rules:

a. 4 points for an ace
b. 3 points for a king in a suit with at least one other card
(i.e. at least two cards in the suit)
c. 2 points for a queen in a suit with at least two other cards
(i.e. at least three cards in the suit)
d. 1 point for a jack in a suit with at least three other cards
(i.e. at least four cards in the suit)
e. 3 points for a suit with no cards
f. 2 points for a suit with only one card
g. 1 point for a suit with only two cards
h. apply rules f. and g. even if one of the other rules applies i. apply rules a. - d. as often
as appropriate in any suit

Example: If the hand has K Q J of hearts
add 3 points for the K
add 2 points for the Q
no points for the J, since there are only 3 cards in the suit

Example: If the hand has K 3 of spades
add 3 points for the K
add 1 point for a suit with only 2 cards

For each hand, input the card values, calculate the point value, and print the hand and the
point value for that hand with appropriate identification. The program should terminate
after all hands have been processed.

