
Saving time and memory in computational intelligence system with machine

uni�cation and task spooling

Krzysztof Gr¡bczewski, Norbert Jankowski∗

Department of Informatics

Nicolaus Copernicus University

ul. Grudzi¡dzka 5

87-100 Toru«, Poland

Abstract

There are many knowledge-based data mining frameworks and it is common to think that new ones can
not come up with anything new. This article refutes such claims. We propose a sophisticated uni�cation
mechanism and two-tier machine cache system aimed at saving time and memory. No machine is run twice.
Instead, machines are reused wherever they are repeatedly requested (regardless of request context). We also
present an exceptional task spooler. Its unique design facilitates e�cient automated management of large
numbers of tasks with natural adjustment to available computational resources. Dedicated task scheduler
cooperates with machine uni�cation mechanism to save time and space. The solutions are possible thanks
to very general and universal design of machine, con�guration, machine context, unique machine life cycle,
machine information exchange, con�guration templates and other necessary concepts. Results gained by
machines are stored in a uniform way, facilitating easy results exploration and collection by means of a
special query system and versatile analysis with series transformations. No knowledge about internals of
particular machines is necessary to extensively explore the results. The ideas presented here, have been
implemented and veri�ed inside Intemi framework for data mining and meta-learning tasks. They are
general engine-level mechanisms that may be fruitful in all aspects of data analysis, all applications of
knowledge-based data mining, computational intelligence, machine learning or neural networks methods.

Key words: Knowledge-based systems, Data mining, Data mining tools, Computational intelligence,
Meta-learning, Machine learning.

1. Introduction

Automation of advanced data analysis exploiting
knowledge-based systems or Computational Intelli-
gence (CI) has recently become a very important
challenge. The community has formulated many
algorithms for data transformation and for solving
classi�cation, approximation and other optimiza-
tion problems (for a compact review see [1] or see
some handbooks [2�11]). The algorithms may be
combined in many ways, so that the tasks of �nd-
ing optimal solutions are very hard and require so-
phisticated tools. Nontriviality of model selection

∗Corresponding author. Tel.: +48 56 6113307, fax: +48
56 6221543

Email addresses: kg@is.umk.pl (Krzysztof
Gr¡bczewski), norbert@is.umk.pl (Norbert Jankowski)

is evident when browsing the results of NIPS 2003
Challenge in Feature Selection [12, 13], WCCI Per-
formance Prediction Challenge [14] in 2006 or other
similar contests. The competitions show that in
real applications, optimal solutions are often com-
plex models and require atypical ways of learning.
Problem complexity is even clearer when solving
more di�cult problems in text mining or bioinfor-
matics, where only good cooperation between dif-
ferent machines may provide a competitive solu-
tion. This means that before application of a �nal
decision learner (for example a classi�er) we have
to prepare some transformations (and/or their en-
sembles) which facilitate success in further decision
making.
To perform successful learning from data in an

automated manner, we need some meta-knowledge
Preprint submitted to Elsevier November 17, 2010

i.e. knowledge about how to build e�cient learning
machines providing accurate solutions to the prob-
lem being solved. Our interest is to provide tools
for automated meta-level analysis, to support �nd-
ing the most appropriate (usually complex) models
for particular problems. The meta-task is indepen-
dent from particular object-level tasks within data
mining and computational intelligence. We present
a general approach, applicable to any kind of learn-
ing problems.
The term meta-learning encompasses the whole

spectrum of techniques aiming at gathering meta-
knowledge and exploiting it in learning processes.
Although many di�erent particular goals of meta-
learning have been de�ned, the superior goal is to
use meta-knowledge to create more accurate models
and/or to �nd them sooner. To reach such goal, a
robust CI framework that e�ciently manages time
and memory must be used. Here, we show some
aspects of our approach to time and memory ef-
�ciency as one of the pillars of successful meta-
learning.
Some meta-learning approaches [15�18] base

mainly on data characterization techniques (char-
acteristics of data like number of features/vectors/-
classes, features variances, information measures on
features, also from decision trees etc.) or on land-

marking (machines are ranked on the basis of sim-
ple machines performances before starting the more
power consuming ones). Although the projects are
really interesting, they still su�er from signi�cant
limitations. The whole space of possible and inter-
esting models is not browsed so thoroughly, thereby
some types of solutions can not be found with this
kind of approaches.
We do not believe that on the basis of some

simple and inexpensive description of data, it is
possible to predict the structure and con�gura-
tion of the most successful learner. Thus, in our
approach the term meta-learning encompasses the
whole complex process of model construction in-
cluding adjustment of training parameters for dif-
ferent parts of the model hierarchy, construction of
hierarchies, combining miscellaneous data transfor-
mation methods and other adaptive processes, per-
forming model validation and complexity analysis,
etc. So in fact, our approach to meta-learning is
a search process, driven by heuristics (created and
adjusted according to proper meta-knowledge) pro-
tecting from spending time on learning processes of
poor promise and from the danger of combinatorial
explosion. The problem of driving the search resem-

bles the problems of context-aware design agents,
where context is understood in a very broad sense
including experience [19].

Meta-learning can be regarded as successful only
if it e�ciently uses the time it is given. It must be
realized within as e�cient CI environment as possi-
ble. Therefore, we have designed and implemented
a general environment for complex machines learn-
ing and analysis. This article describes some of the
crucial elements of the system with special emphasis
on e�ciency of time and memory usage. We intro-
duce some completely new concepts in the realm of
knowledge based systems including unprecedented
machine uni�cation system and dedicated approach
to task spooling and running. Section 2 presents
more detailed justi�cation of the need for a new ar-
chitecture and, at the same time, presents the main
features of our system. Section 3 describes some
of the substantial aspects of kernel design. Sec-
tions 4 and 5 present two aspects of the system that
predispose it for meta-learning: task management
and machine uni�cation. Deep analysis of learning
and testing results is possible thanks to the query
subsystem presented in section 7. In section 8 we
present our meta parameter search machine and its
basic applications that illustrate the mechanisms
described in preceding sections. All the solutions
and applications have been realized in practice�
they are not parts of a future project but of an
existing and already working system. We do not
include exhaustive tables of results obtained with
the system, because the aim of this article is not
to discuss particular results but to present some in-
teresting mechanisms and illustrate how they work.
The �nal section 9 summarizes and discusses future
perspectives of the environment.

2. Why yet another data mining system was

indispensable

In order to conduct robust meta-learning, we
need a universal, versatile, but also e�cient and
easy to use framework. It must facilitate unham-
pered manipulation of complex machine con�gu-
rations and learning results. Because in meta-
learning we must perform huge amounts of tests and
compare them reliably, we need a framework capa-
ble of avoiding multiple calculations of the same
tests and facilitating robust comparisons between
old and new calculations, so learning must be per-
formed for the same data samples etc. Therefore,

2

we need a system providing all of the following fea-
tures:

1. Engine-level architecture:

(a) A uni�ed encapsulation of most aspects of
handling CI models like learning machines
creation, running and removal, de�ning
inputs and outputs of adaptive methods
and their connections, adaptive processes
execution, etc.

(b) The same way of handling and opera-
tion of simple learning machines and com-
plex, heterogeneous structures. Easy def-
inition, con�guration and running of ma-
chine hierarchies (submachines creation
and management).

(c) Easy and uniform access to learners' pa-
rameters.

(d) Easy and uniform mechanisms for repre-
sentation of machine inputs and outputs
and for universal information interchange.

2. Task management:

(a) E�cient and transparent multitasking en-
vironment for processes queuing/spooling
and running on local and remote CPUs.

(b) Versatile time and memory management
for optimal usage of the computational re-
sources.

3. Results acquisition and analysis:

(a) Easy and uniform access to exhaustive
browsing and analysis of the machine
learning results.

(b) Simple and e�cient methods of validation
of the learning processes, conducive to fair
validation i.e. not prone to testing embez-
zlements.

(c) Variety of tools for estimation of model
relevance, analysis of reliability, complex-
ity and statistical signi�cance of di�er-
ences [20].

4. Machine management e�ciency:

(a) Mechanisms of machine uni�cation and
a machine cache system preventing re-
peated calculations (signi�cant in so large
scale calculations like meta-learning).

(b) Multilevel random seed management to
facilitate providing the same learning en-
vironment and data for di�erent learning
machines.

5. Others:

(a) Templates for creation and manipulation
of complex�structure machines, equipped
with exchangeable parts, instantiated
during meta-learning.

(b) Rich library of fundamental methods
(especially learning machines) providing
high functionality, versatility and diver-
sity.

(c) Simple and highly versatile Software De-
velopment Kit (SDK) for programming
system extensions.

There are plenty of data mining or knowledge-
based systems available today [21�24]. Software
packages or systems like Weka, RapidMiner, Kn-
ime, SPSS Modeler (former Clementine), Ghost-
Miner etc. are designed to prepare and validate
di�erent computational intelligence models, but we
have found none, that would have implemented all
the features mentioned above or would facilitate an
extension to support the features without signi�-
cant rearrangements within the architecture of the
kernel. Moreover, some of the features, we pro-
pose, have not been provided by any of the sys-
tems mentioned above. These features are not just
attractive�they are necessary to provide advanced
and e�cient data analysis using advanced meta-
learning techniques.
Commercial products (like SPSS Modeler), are

addressed rather to business users than to academic
researchers, so they are designed as tools for data
analysis on the basis of obtained models and as such
they often do not reveal their internals in a satis-
factory way for e�cient meta-analysis. The funda-
mental purposes are di�erent in the case of open
source packages like Weka, RapidMiner or Knime,
but they do not support the features listed above
in a satisfactory way either. Some systems are lim-
ited to one research �eld, e.g. SNNS [25] is lim-
ited to some algorithms around neural networks.
In most such systems, developing all the features
listed above is practically impossible.
Description of all the advantages and drawbacks

of a number of popular systems would require a
lot of space and is not the purpose of this article.
Here, we just point some major drawbacks of the
most popular frameworks to better show the needs
of advanced meta-learning approach. To avoid ar-
bitrary judgments with insu�cient explanation, we
describe the most important aspects instead of pre-
senting a raw (questionable) feature table. Al-
though our decision to create a new system from

3

scratch was undertaken a couple of years ago, be-
low we relate our prerequisites to the current state
of other systems, to make the analysis easier to ver-
ify. In fact, most of our arguments are still valid
today, so comparing with the current state is de�-
nitely more reasonable.
Ad. 1: All data mining frameworks try to unify

miscellaneous processes, to handle them in a uni-
form way, so they usually address the aspects 1a�1d
in some way, but the approaches are quite diverse.
The fundamentals of di�erent engines look similar:
in our approach, projects consist of interconnected
machines (see section 3), while RapidMiner compo-
nents are called operators and Knime ones are nodes
and also have some interconnected I/O ports, but
the scopes of entities included by the terms makes
the systems signi�cantly di�erent from each other.
RapidMiner and Knime went so far in their uni�ed
views that their operators and nodes include both
advanced learning machines and simple functions
related to results visualization and statistical tests
like t-test. Knime even contains a node responsible
for assigning colors to di�erent categories for the
purpose of further visualization. In our approach,
we have also enclosed many di�erent processes into
machines (see sec. 3), but created separate tools for
results manipulation and visualization. Separating
them into di�erent levels supports easier creation
and analysis of complex processes.
Similarly, it is very advantageous to notice (and

re�ect in the system architecture) the di�erences
between con�guration time and run time of com-
plex processes, especially those including repeated
subprocesses. No other system has introduced sim-
ilar distinction so far. The lack of such solutions
makes projects less intuitive. For example, both
RapidMiner and Knime projects containing cross-
validation tests are not natural to handle, because
single subprocess hierarchy is adequate to the con-
�guration time but not to run time form of the
process. As a result, at run time, only the last
instance of the subprocess is available, small con�g-
uration changes may require recomputation of the
whole process or a large part of the project, includ-
ing items which are not a�ected by the change etc.
The di�erences at low-level system organization

also imply signi�cant di�erences in user interaction
with the system. Introducing such nodes like Kn-
ime's �Color Manager� may result in the necessity
of running the project in parts, with some user in-
teraction between them, because it may be impos-
sible to con�gure such nodes properly before other

nodes have provided their results. Necessity of user
interaction in the middle of the project is equally
inconvenient as no possibility of user interaction
during the life of the project (the case of Rapid-
Miner). The user must be allowed to interact with
the project but must also be able to design com-
plex data analysis projects which can be run with
no human supervision.
The aspect 1c is nowadays mostly a matter of

programming language selection as some languages
provide tools for meta-level analysis of their code
(meta-level of the programming language). Cur-
rently, C# is the most advanced programming lan-
guage regarding the meta-level analysis possibili-
ties, hence we have chosen it for our system. C++
provided just a little bit (its RunTime Type Identi-
�cation system). Java can also be satisfactory from
this point of view, so it was chosen as the language
of RapidMiner and Knime source codes.
Ad. 2: Meta-learning, like most advanced data

mining tasks, requires bulk computing, so it is very
desirable that the system can run subprocesses on
many di�erent CPUs. The authors of Knime kept
in mind such requirements from the start of the
system, but RapidMiner, being a continuation of
Weka and Yale e�orts, does not provide satisfactory
tools for parallelization.
Engine-level solutions have important in�uence

on many other aspects of higher level system be-
havior. RapidMiner introduces tools for manual or-
dering of the operators creation, as its architecture
does not allow for fully automatic determination of
the order in all cases.
In earlier versions of RapidMiner, parallelization

was left completely to the authors of operators.
Operators like ParallelXValidation or ICA were
solving multithreading on their own. Although with
the advent of version 5, the approach is di�erent,
the engine-level solutions still do not solve the prob-
lems with determination of the order of running op-
erators.
Our approach to the output-input bindings fa-

cilitates fully automated management of machine
creation and parallelization for arbitrarily complex
machine hierarchies. The most important mecha-
nisms of our task management system are sketched
in section 4.
Ad. 3: E�cient results analysis is another very

important feature of a tool to be used for meta-
learning. The results system is closely bound up
with other engine-level solutions. The problems
with management of multilevel hierarchies of oper-

4

ators and nodes make the results systems of Rapid-
Miner and Knime not �exible enough. We usually
have to foresee all the results that will be needed
further and all the interesting results must be de-
posited at run time, since after the whole process is
�nished, only the last instance of each operator/n-
ode is available. GhostMiner keeps all machines
(when desired), so it makes all results available,
but provides no general framework for results ac-
cess and analysis. From meta-learning perspective
it is important to access di�erent kinds of results
in a common manner so that no speci�c knowledge
about particular machines is required to collect and
analyze their results. No available system provides
satisfactory tools for that, so we have designed a
uniform results repository and a query system for
this purpose. They are brie�y presented in sec-
tion 7.
Data mining frameworks should also support fair

validation and comparison of results obtained with
di�erent methods. They should not suggest un-
fair solutions (though preventing all embezzlements
is not possible). Therefore validation mechanisms
should not separate data preprocessing from proper
model construction, because fair validation must
treat any sequence of supervised methods as a
whole and validate it as a whole. For example,
Weka used to exhibit distinction between data pre-
processing and proper analysis which may seem to
justify some incorrect ways of data mining project
construction. Even some books on data mining
suggest almost total separation between prepro-
cessing and classi�cation or prediction. For more
about incorrect methodology in data analysis see
section 7.6.
Ad. 4: Up to our knowledge, there is no other

data mining system providing automated mecha-
nisms for machine uni�cation. Even in a single
project, when two identical models are scheduled
they are built twice and two identical copies reside
in memory. Of course, the project designer may
prevent from repetitions where possible by proper
project construction, however there are always cir-
cumstances, where some repetitions can not be fore-
seen (e.g. in feature selection tasks). With e�cient
machine uni�cation, we may restart the project
(also with some changes within it) and all repeated
parts are reused saving time and memory. How we
have reached the goal of run time machine uni�ca-
tion is described in section 5.
The functionality of machine uni�cation would be

seriously restricted without a seed control mecha-

nism for random processes designed at system-level.
To make comparisons of complex multi-level tests
most reliable and reasonable, the seeds of random
processes must be set in the same way for sepa-
rate runs (repetitions/folds) of the tests. For ex-
ample, when repeating cross-validation tests sev-
eral times for better error estimation, subsequent
data splits must be di�erent for each CV repeti-
tion, but the whole sequence of seeds should be the
same for di�erent test runs in order to use paired
t-test or other statistical tests for paired samples.
In RapidMiner one can use global or local seed in
particular operators, but no automated intelligent
seed policy can be performed for complex multi-
level structures of operators. Knime does not care
for such random processes control, and the task is
left to the authors of particular operators. The
more so, mechanisms of automated management of
multi-level node structures are lacking. One may
use macros in RapidMiner or variables in Knime
to implement the desired behavior for a particular
project, but this way, each project requires a lot of
additional e�ort to obtain the goal.

Our design facilitates automated and versatile
seed control for random processes of any complex-
ity. It is addressed in section 5.3.

Ad. 5: Out of many little solutions supporting
meta-learning, machine templates (feature 5a) are
worth a special mention, because they help con�g-
ure and manage complex machine structures. We
introduce them in section 3.5 and preliminarily use
in the meta parameter search machine (section 8)
which can be seen as one of the �rst steps toward
proper meta-learning. The features 5b and 5c con-
cern system libraries and are out of the scope of
this article, which puts stress on fundamental mech-
anisms facilitating e�ciency of advanced learning
processes within computational intelligence.

To conveniently and e�ciently perform meta-
learning tasks, all the listed features should be in-
corporated into a uniform and robust system. The-
oretically, each system available today could be
developed to ful�ll our requirements, but accord-
ing to our estimation, the extent of e�ort to do
so would be too large, even in the case of Ghost-
Miner which we know from cover to cover because
we have designed and implemented it. Instead of
wrestling with shortages and bottlenecks of exist-
ing systems, we have designed a new system from
scratch, keeping in mind all the meta-learning re-
quirements (the substantial ones listed above and

5

Machine

Input 1...
Input n

Output 1...
Output m

Machine
process

parameters

Results
repository

Figure 1: The abstract view of a machine.

many others, maybe less spectacular).

Some of our solutions are presented in more detail
in the following sections.

3. System architecture and information ex-

change

Designing an architecture ful�lling so many ex-
pectations as those listed in the preceding section
is not a trivial task, especially, when one of the
strong requirements for the system is simplicity of
use. Fortunately, proper system kernel foundations
reconciled the two requirements, despite they seem
contradictory.

The main key to the new possibilities is the uni-
�ed view of machine and model. First of all, it
is advisable to distinguish the two terms to avoid
ambiguities. A machine is any process that can
be con�gured and run to bring some results. A
model is the result of such a process. For exam-
ple an MLP network algorithm (the MLP machine)
can be con�gured by the network structure, initial
weights, learning parameters etc. It can be run on
some training data, and as a result we get a trained
network�the MLP model created by the learning
process of the MLP machine.

We deliberately avoid the term �learning ma-
chine�, since in our approach a machine can perform
any process which we would, not necessarily, call a
learning process such as loading the data from a
disk �le, data standardization or testing a classi�er
on external data.

A general view of machine is presented in �gure 1.
The machine con�guration consists of:

• speci�cation of inputs and outputs (how many,
names and types),

• machine process parameters,

Data loader

Data

File path

Classification test

Classifier
Data

Accuracy

Figure 2: Machine examples: a Data loader and a Classi�ca-

tion test.

• submachines con�guration (it is not depicted
in �gure 1 to keep the �gure clear; in further
�gures, starting with �gure 3, the submachines
are visible as boxes placed within the parent
machine).

More formally, each machine con�guration is de-
�ned as

C = 〈p, io, {Ci : i = 1, . . . , n}〉 (1)

where p represents machine process parameters, io
speci�es inputs and outputs descriptions (counts,
names and types), and {Ci : i = 1, . . . , n} is a se-
quence of optional submachine con�gurations (en-
ables construction of complex machines�each ma-
chine con�guration may have submachine con�gu-
rations).
Given parameters of a machine process together

with submachines con�gurations and inputs to be
precessed, the machine runs to create its model.
The results of the process may be exhibited as out-
puts and/or deposited in a collection called results

repository.
The inputs and outputs serve as sockets for infor-

mation exchange between machines. The di�erence
between machine inputs and parameters is that in-
puts come from other machines while the parame-
ters are speci�c to the process and are provided di-
rectly by the user. Similarly, outputs exhibit parts
of the model to other machines (to be passed as
their inputs, when proper input�output connection
is established). Results repository serves as kind of
report from machine run and contains an excerpt
from the model. It is up to the machine author
whether the machine receives any inputs, whether
it has some adjustable parameters and whether it
has outputs and/or puts results in the repository.
Two examples of simple machines are presented

in �gure 2. The Data loader machine receives no
inputs and declares a single parameter which is a
string containing the �le name from which the data

6

is to be loaded. The machine process exposes the
data series as the output and deposits no entries
into the results repository.
The machine of Classi�cation test, presented in

�gure 2 on the right, takes inputs but no parame-
ters. The inputs introduce the classi�er (more ex-
actly an interface with the classi�cation routine)
to be tested and the test data series. As a result
we get information about accuracy of the classi�er.
The machine provides no outputs, because the in-
formation it gains, is not expected as input of any
other machine.
In the following examples, we will not expose ma-

chine parameters or results deposited in the repos-
itory, as they are not so important from the point
of view of the presentation. More important is the
information �ow, so inputs, outputs and their in-
terconnections will be thoroughly presented.
The uni�ed concept of machine does not intro-

duce any kind of machine type, so we do not split
machines to classi�ers, data loaders, data trans-
formers etc. Instead the inputs and outputs of a
machine de�ne possible contexts of its application
i.e. any machine providing an output of type Clas-
si�er may be called a classi�er and used in the con-
text of a classi�er, for example may be tested by the
Classi�cation test machine when its Classi�er input
is bound to the Classi�er output of the former ma-
chine. Thus, a single machine may be useful in a
number of ways. For example a decision tree may
expose a Classi�er output and also a Feature ranking
output (generated on the basis of features occurring
in the conditions de�ning the tree nodes). It will let
the decision tree machine occur both in the context
of a classi�er and a feature ranking.

3.1. Scheme machine

A very important machine, from the organiza-
tional point of view, is the Scheme machine (see
an example in �gure 3). It is a machine with a
function of a machine container or machine group.
The process of a scheme machine simply runs all
the submachine processes. The submachine rela-
tion is depicted as placement of the submachine
within the area of the parent machine. The input-
output interconnections of �gure 3 are a part the
scheme machine parameters, since they are just in-
structions about how to bind inputs when creating
submachines.
The scenario con�gured within the scheme in �g-

ure 3, assumes two data collections coming through
the inputs (one for training and one for test). Two

Scheme

Training data
Test data

SVM

Data Classifier

kNN

Data Classifier

Classification test

Data

Classifier

Classification test

Data

Classifier

Figure 3: A scheme machine example.

learning machines: k Nearest Neighbors (kNN) and
Support Vector Machine (SVM) are to be trained
on the training data and their classi�er outputs
tested by separate test machines on the test data.
Such a scenario is very useful for detailed compar-
ison of the results of the two learning algorithms,
because they are trained on exactly the same data
series and tested on the same data, so each par-
ticular decision can be reliably compared (see sec-
tion 7).

3.2. Transform and classify machine

The schemes may be used by other machines
to facilitate user con�guration of scenarios to be
performed to obtain required results. For exam-
ple, a machine performing data transformation and
classi�cation called Transform and classify (T&C)
presented in �gure 4, de�nes two scheme subma-
chines to be �lled by the user at con�guration time.
Such de�nition makes the T&C a general machine
capable of performing any data transformation and
classi�cation scenarios. For example, one can put
a standardization machine inside the Transforma-
tion scheme and an SVM machine into the Clas-
si�er scheme to perform SVM classi�cation after
data standardization (the lower part of �gure 4).
The interconnections within the two schemes (sub-
machines of T&C), de�ne the behavior within the
schemes. There are no interconnections between
the inputs of the parent machine and submachines
or between the outputs of submachines and the
outputs of the parent machine, because they are
not con�gurable�the T&C machine will take care
of the appropriate connections at run time. The
schemes inside the T&C machine can be �lled with
an arbitrarily complex scenario, not just a single
machine. The only requirement is that all the out-
puts of the schemes are bound to some outputs of
contained machines.

7

Transform and classify

Data Classifier

Transformation scheme

Data
Data

Transformation

Classifier scheme

Data Classifier

Transform and classify

Data Classifier

Transformation scheme

Data
Data

Transformation

Classifier scheme

Data Classifier

Standardization

Data
Data

Transformation

SVM
Data Classifier

Figure 4: A con�guration of the Transform and classify ma-
chine (raw and �lled).

Transform and classify

Data Classifier

Transformation scheme

Data
Data

Transformation

Classifier scheme

Data Classifier

Standardization

Data
Data

Transformation

SVM
Data Classifier

Figure 5: T&C machine at run time.

At run time, the machine gets a form depicted
in �gure 5. Beside the connections de�ned at con-
�guration time, the internal schemes' input bind-

ings can be seen�they were decided by the parent
machine according to the aim of the submachines:
the transformation is run on the incoming training
data and the classi�er is trained on the transformed
training data. When the classi�er output of the
main machine is questioned to classify a series of
data objects, it �rst transforms the data using the
Transformation output of the transformation scheme
(in fact of the standardization machine) and then
classi�es the transformed data with the Classi�er
output of the classi�er scheme (in fact SVM out-
put). This procedure guarantees that the test data

Feature selection

Data
Feature ranking

Data

Transformation

CC ranking

Data Feature ranking

SSV decision tree

Data
Classifier

Feature ranking

Figure 6: Con�guration of the Feature selection machine and
two feature ranking machines.

series is standardized (with respect to the statis-
tics of the training data) and then classi�ed. The
T&C machine can be used wherever a classi�er is
expected (in the same contexts as, for example an
SVM), because of its Classi�er output.

Additional advantage of the Transform and clas-
sify machine is that such form of cooperation be-
tween machines is also suitable for further opti-
mization and test procedures. For example, classi-
�ers may be easily combined with feature selection
methods (as it can be seen below) and the param-
eters like the number of features can be optimized
in a simple and universal way, using machines like
MPS (see section 8).

3.3. Feature selection and rankings

The family of feature selection methods based on
ranking measures is another interesting illustration
of the information �ow between machines. The
object oriented encapsulation idea leads to a split
of the feature selection process into two stages: gen-
eration of feature ranking and selection of the ad-
equate number of the top-ranked features. It re-
sults in just one feature selection machine for all
the feature selection purposes and a number of fea-
ture ranking machines implementing particular al-
gorithms.
As shown in �gure 6 the feature selection machine

declares two inputs (the data and feature ranking)
and outputs two interfaces (providing data series
obtained by �ltering the input data to keep just the
selected features and the transformation of feature
selection for external data transformation). How
many features are to be selected is de�ned within
the feature selection machine parameters: arbitrary
number of top-level features or the features with
the ranking value exceeding given threshold. Nat-
urally, there is no single rule for optimal setting

8

of these parameters for all data (all problems), so
they must be determined separately for each data.
It can be obtained with meta-learning: sometimes
so simple methods as meta parameter search pre-
sented in section 8 are satisfactory and sometimes
more advanced approaches combining feature selec-
tion with other data transformation methods are
inevitable [26, 27].

3.4. Repeater machine

In data mining, we very often need to perform
similar tasks many times. A typical example is
cross-validation technique used for validation of
model parameters or to test generalization capabil-
ities of an algorithm. For such purposes, we have
created a general machine named Repeater. Initial
view of the repeater con�guration is presented in
�gure 7 on the left. It declares two subschemes:
one for inputs generation (Distributor scheme) and
one for a scenario to be repeated (Test scheme).
A single cycle of the repeater job is to generate
the distributor according to the �rst subcon�gura-
tion, and pass its proper outputs to a number of
subsequent instances of the test scheme. The dis-
tributor's outputs are so called multi-outputs i.e.
collections of output objects. The collections size
(must be the same for all distributor's outputs) de-
�nes the number of instances of the test scheme
that will be created by the repeater. Moreover, the
repeater has a parameter de�ning how many times
the whole scenario will be repeated.

The example presented in �gure 7 on the right
is a repeater con�gured to perform a comparative
CV test of kNN and SVM machines. The CV dis-
tributor receives the data as input and splits it into
a number of training data sets and the same num-
ber of test data sets, according to the rule of n-
fold cross-validation. During con�guration of the
repeater, adding the CV distributor to the distrib-
utor scheme results in propagation of the outputs
from the distributor to the scheme and also to test
scheme inputs, so that the test scheme can also be
properly con�gured. Requesting a machine of this
con�guration produces machine hierarchy similar to
the one presented in �gure 8. Performing twice (in-
dependently) 2-fold CV we generate two distribu-
tors (one for each CV cycle) and four test schemes
(two per CV cycle). The CV distributor outputs
are two training sets and two test sets�the �rst el-
ements go to the inputs of the �rst test scheme and
the second elements to the second scheme.

Repeater

Data

Distributor scheme

Data
Training data

Test data

CV distributor

Data
Training data

Test data

Test scheme

Training data
Test data

1
1

Test scheme

Training data
Test data

2
2

Distributor scheme

Data
Training data

Test data

CV distributor

Data
Training data

Test data

Test scheme

Training data
Test data

1
1

Test scheme

Training data
Test data

2
2

Figure 8: Run time view of Repeater machine con�gured
to perform twice 2-fold CV. Test schemes are simpli�ed for
clearer view�in fact each one contains four submachines as
in �gure 7.

3.5. Con�guration templates

Schemes are also very useful from the point of
view of meta-learning. They may play the role
of placeholders for machine con�gurations (of sin-
gle machines or complex machine scenarios). Such
incomplete con�gurations are called machine con-

�guration templates. With simple substitutions,
templates can be easily converted into fully spec-
i�ed (feasible) machine con�gurations. It is espe-
cially important during meta-search to easily gen-
erate and test di�erent machine con�gurations. An
example of a template is the raw con�guration of
Transform and classifymachine presented in �gure 4.
It contains two empty schemes, which can be seen
as �placeholders� for subcon�gurations performing
functions de�ned by the inputs and outputs of the
scheme. As a consequence, the raw T&C con�gu-
ration may be regarded as a template of con�gura-
tions.
Similar empty scheme may be used to parame-

terize con�guration of boosting algorithm, where a
placeholder for a classi�er may be �lled in proper
time. It means that the raw con�guration of boost-
ing is also a template.
Another substantial template is the one for per-

forming feature selection (see �gure 9). The dashed
box represents a placeholder for a ranking. In prac-
tice, it can be a scheme with adequate de�nitions of
the input and the output, so that all other elements
of the con�guration (the interconnections) may be
realized. After replacing the Ranking scheme by a

9

Repeater

Data

Distributor scheme

Data

Test scheme

Repeater

Data

Distributor scheme

Data
Training data

Test data

Test scheme

Training data
Test data

CV distributor

Data
Training data

Test data

SVM

Data Classifier

kNN

Data Classifier

Classification test

Data

Classifier

Classification test

Data

Classifier

Figure 7: Repeater machine con�guration (raw and �lled).

Feature selection template

Data
Data

Transformation

Ranking

Data Feature ranking

Feature selection

Data
Feature ranking

Data

Transformation

Figure 9: Feature selection template.

feasible scenario the whole construct can be created
and run or put into another con�guration (for ex-
ample into the Transformation scheme of the T&C
machine con�guration.
Just the two templates described above, aug-

mented with information about available simple
machines for feature ranking, some other data
transformations (like standardization) and classi�-
cation learning machines, comprise quite a robust
tool for machine con�guration generation and as a
consequence for robust meta-learning.

4. Machine life cycle

Thanks to the uni�ed view of machine, we can
simply state, that the fundamental task of a data
mining system is to create and run machines in
given contexts. Therefore, in our approach, each re-

quest for machine precisely de�nes machine con�g-

uration (as de�ned and discussed in section 3) and
machine context which is the information about:

• the parent machine (handled automatically by
the system, when a machine orders creation of
another machine) and the child index,

• input bindings i.e. the speci�cation of other
machines outputs that are to be passed as in-
puts to the requested machine.

The system serves the request so as to assign ad-
equate machine to it and, if necessary, run the ma-
chine process to make the machine ready for fur-
ther analysis of its outputs and the information de-
posited in the results repository. Thanks to the
concept of machine context, the system may as-
sign the same machine to many contexts. Then,
such machine may provide its services and be an-
alyzed in di�erent contexts within arbitrarily com-
plex machine structures. As shown further, sharing
machines in di�erent contexts yields signi�cant sav-
ings in CPU time and memory.
The possible paths, machine requests go through,

are presented in �gure 10. The �owchart presents
di�erent states of the requests while the dashed
lines encircle the areas corresponding to particular
system modules.

4.1. Input bindings

Each machine request is �rst analyzed to deter-
mine the machine contexts providing inputs to the
requested machine.
This is why at the con�guration stage each input

has to be bound to an output of another machine
(or a number of outputs). The input bindings may
be de�ned as:

B = {〈input name, {binding}〉}, (2)

where {binding} denotes a set of bindings.
In consequence, full con�guration of machine is

de�ned by pair of con�guration and their bindings:

FC = 〈C,B〉. (3)
10

Inputs readiness guard Machine cache Task spooler Task thread

are inputs
ready?

is
machine

available?

waiting for
the turn

another
context

running?

running
the

machine
process

machine ready
STOP

waiting
for inputs

waiting for
the other
context

the other
context

aborted?

machine
substituted

STOP

START
configuration
and inputs
bindings

no

yes

yes

no no

yes

yes

no

Figure 10: Machine request life cycle.

An input may be bound in one of three ways in-
cluding binding to a parent's input (as it was often
the case in the �gures presented so far), to a sib-
ling's output (an output of a machine that does not
exist at the time of con�guration) or to the capsule
(which can be seen as an path in the machines sub-
tree, from a machine called the root of the path to
its ancestor following the line of direct parent-child
dependencies). More formally:

binding = (4)

〈parent input name〉 | (5)

〈id of sibling machine, sibling output name〉 |
〈submachine path, output name〉

Therefore, the abstract information must be
transformed into outputs speci�cation containing
machine context references. After that, the re-
quest is passed to the input readiness control mod-
ule, where, if necessary, it waits for other machines
(the machines providing inputs) processes to �nish.
When all the inputs are ready, the request is ex-
amined by machine cache, whether the machine is
already available because of earlier calculations. If
the uni�cation is not possible the machine request

goes to the task spooler and �nally it can be ful�lled
by a task running thread. The life of a request may
be aborted at any time by the parent machine or
by the system user. This may in�uence the �ows
of other requests for the same machine. Below we
discuss the crucial stages of machine request man-
agement.

4.2. Inputs readiness guard

To facilitate optimal parallelization of running
machine processes, the requests must be deposited
in the task spooler as soon as all the inputs for
particular machine are ready. Therefore, the in-
put readiness guard controls, in real time, all the
changes in machine readiness and submits runnable
requests to the spooler. The most important
functionality of the module is performed by two
methods: Control and MachineFinished. They are
launched by the events of new machine requests and
machine processes �nalization, respectively. The
sketch of their behavior is presented in the follow-
ing pseudocode:

1 void Control(MachineContext machineContext)
2 {

11

3 Set_of_contexts dependenceContexts,
4 notReadyContexts;
5 dependenceContexts =
6 machineContext.DependenceContexts();
7 notReadyContexts =
8 FilterNotReady(dependenceContexts);
9 if (notReadyContexts.Count == 0)
10 ProvideMachine(machineContext);
11 else

12 AddWaiting(machineContext,
13 notReadyContexts);
14 }
15 void MachineFinished(Machine machine)
16 {
17 foreach (context bound with machine)
18 foreach (waitingContext
19 awaiting machine outputs)
20 {
21 Bind2ResolvedBind(waitingContext);
22 if (waitingContext has all inputs ready)
23 ProvideMachine(waitingContext);
24 RemoveWaiting(waitingContext, machine);
25 }
26 RemoveWaiting(machine);
27 }

When a machine context is de�ned and passed
to the inputs readiness guard, all the machine con-
texts, being input providers for the machine, are
determined (line 6). If all of them are ready, the
method ProvideMachine is called (line 10) to pass
control over the context to another module (here, to
the machine cache, for analysis of uni�cation pos-
sibilities). Otherwise, the information about the
context and its dependencies is added to proper in-
ternal structures for further control.
When a machine process run is �nished, a sig-

nal is sent to the inputs readiness guard and it's
MachineFinished method is called. The method
tests all the contexts waiting for the machine, and
triggers ProvideMachine method (line 23) if the ma-
chines outputs are the only outputs awaited by
given context. Because machine outputs may be
awaited through its di�erent contexts, all the con-
texts (and their output readers) are examined. The
information about waiting machines is maintained
up-to-date with calls of RemoveWaiting methods of
the pseudocode.

4.3. Resolved input bindings

The goal of function Bind2ResolvedBind in line
21 is to transform the binding from the symbolic

form to the resolved form�the �nal form which
points directly the appropriate output. At start,
the machine contexts providing inputs were found,
but not always the machines contained within these
contexts are the real output providers of interest.
For example, an output of a scheme is just a �tran-
sit� from another machine output. The same oc-
curs when a machine exhibits output which in-
deed is an output of a submachine. Resolved input

bindings contain precise information about the ma-
chines providing inputs to the requested machine.
This information is especially important from the
point of view of optimization of machine informa-
tion exchange in distributed processing.
In that process each binding is transformed to its

resolved form:

rbinding = 〈machine stamp, output name | (6)

output stamp〉,

When all the inputs of a requested machine are
ready (the if-condition in line 22 becomes true),
they are resolved, i.e. the machines, that actually
provide the inputs are determined:

RB = 〈input name, {rbinding}〉 (7)

The necessity of that process will be visible also
in section 5.

4.4. Uni�cation within the machine cache

From the point of view of a machine request life,
the uni�cation stage is very simple: the machine
cache is checked, whether exactly the same machine
has been requested (and successfully �nished) be-
fore, which means that the machine of requested
con�guration and assigned resolved inputs already
exists in cache and may be reused. The advan-
tages of the machine cache and the uni�cation pro-
cess, with special emphasis on meta-learning appli-
cations, are discussed in more detail in section 5.

4.5. Task spooler

A machine context, that can not be uni�ed
with any context analyzed earlier, is equipped with
proper task information and the task is pushed to
the task spooler, where it waits for its turn and for a
free processing thread. The process of task spooling
is quite nontrivial because di�erent requests may be
subject to uni�cation also within the spooler, can-
celing a task must be properly managed (to not
cancel other requests for the same machine) etc.

12

Task spooler

Project 1

Task spooler

Project 2

Thread 1

Thread 2

. . .

Thread n

Task manager 1

Thread 1

Thread 2

. . .

Thread m

Task manager 2

Figure 11: Two projects and two task managers.

Also the structure of the spooler is very important
from the point of view of e�ciency of calculations.
More detailed discussion of these ideas is presented
in section 6.

4.6. Task running

Machine requests are popped from the task
spooler by task managers (computation servers) to
be run within a thread. The idea is depicted by
�gure 11. Each project can subscribe to services
of any number of task managers executed either on
local or remote computers. Moreover subscribing
and unsubscribing to task managers may be per-
formed at project run time, so the CPU power can
be assigned dynamically. Each task manager serves
the computational power to any number of projects.
Task managers run a number of threads in parallel
to make all the CPU power available to the projects.
Each project and each task manager presented in
�gure 11 may be executed on di�erent computer.
A task thread runs machine processes one by one.

When one task is �nished, the thread queries for an-
other task to run. If a task goes into waiting mode
(a machine requests some submachines and waits
for them) the task manager is informed about it
and starts another task thread, to keep the number
of truly running processes constant.
Machine tasks may need information from

other machines of the project (for example input
providers or submachines). In the case of remote
task managers a project proxy is created to supply
the necessary project machines to the remote com-
puter. Only the necessary data is marshaled, to
optimize the information �ow.

Naturally, all the operations are conducted auto-
matically by the system. The only duty of a project
author is to subscribe to and unsubscribe from task
manager services�each is just a single method call.

5. Machine uni�cation and machine caches

In advanced data mining project it is inevitable
that a machine with the same con�guration and in-
puts is requested twice or even more times. It would
not be right, if an intelligent data analysis system
were running the same adaptive process more than
once and keep two equivalent models in memory.
Therefore, we have introduced machine contexts as
objects separate from proper machines. Di�erent
contexts may request for the same machine and may
share the machine. This general goal is realized by
two cooperating mechanism: the machine uni�ca-
tion system and the two-tier machine caches.
Di�erent requests are guaranteed to result in the

same machine if:

• con�gurations of the machines (parameters of
the processes) are equal and

• the inputs are bound to the same or equivalent
outputs.

Such requests may be uni�ed which means that
they may share the machine�the request served
later gets the machine from the cache and next in-
stance of the machine is not run.

5.1. Machine uni�cation

Uni�cation possibility may be judged after the
machine inputs are ready. It means that we can
not determine the equality of pairs FC = 〈C,B〉
(Eq. 3), but we need to check equivalence of the
resolved con�gurations. It is obtained in the input
resolving process, in which the pair FC is converted
to resolved con�guration:

RC = 〈C,RB〉. (8)

where RB describes the resolved inputs (de�ned in
Eq. 7).
The equivalence of machine con�gurations (the C

part of FC) does not change, but only provided the
resolved bindings (which point the �nal outputs)
we can determine the equivalence. The control per-
formed at the appropriate time guarantees that no
uni�cation possibility is overlooked.

13

Proper de�nition of machine con�guration in-
cludes a method to determine equality of two pa-
rameter structures of the same type, which is used
by the uni�cation system. The term �machine
parameters� includes information about pseudo-
random processes performed by the machine (if
any) and subcon�gurations (if present). Therefore,
we have formalized the way machines should deal
with randomness. It is described in subsection 5.3.
Comparisons of sets of inputs are performed in

two stages to re�ect �same� and �equivalent� inputs
respectively: �rst it is checked whether they refer
to exactly the same output objects and then, if the
input bindings seem di�erent after the �rst check
and the output types implement proper interface,
they are compared with adequate method of the
interface.
When the two conditions of machine uni�cation

are satis�ed, new machine is not created and the
new context just refers to already existent machine.
Machine uni�cation must be controlled at di�er-

ent stages of machine life (depicted in �gure 10).
Appropriate check takes place before machine is
sent to the spooler. If another request for the same
machine has been fully served before (i.e. the ma-
chine is already in the cache), than its machine can
be instantly assigned to the new context, and the
new request is not spooled. When two (or more)
requests are uni�ed before any of them is �nalized,
then two tasks (of the same machine creation) are
pushed to the task spooler (with di�erent priori-
ties). Spooler services control the requests to pre-
vent running two requests for the same machine in
parallel and producing two identical machines.
More details about the spooler, also in the con-

text of machine uni�cation, are presented in sec-
tion 6.

For e�cient realization of uni�cation, another
two important problems had to be solved. The
problems would come out, when the machine cache
had to keep thousands of machines (not just tens):

• Memory for saving machines is limited. In real
cases, the numbers of machines which can be
kept in memory are relatively small. This is
solved by a disk cache cooperating with the
memory cache (see section 5.2).

• Searching for machines in machine cache must
be highly e�ective. This is achieved by e�cient
machine uni�cation mechanisms described just
below.

Firstly: the problem of machine uni�cation can
not be realized by means of plain comparison of two
RC con�gurations. It would be too slow to compare
the searched RC pair with each RC pair in the
cache. Secondly: when keeping machines in plain
structures the search time would depend linearly
on the number of machines in machine cache, but
when the RC pairs are complex, the complexity is
proportional to the sum over all parameters of all
RC's in the cache: ∑

rc ∈ cache

|rc|, (9)

where |rc| is the length of rc. Such solution is not
acceptable.
To make machine search very much quicker, we

have built a specialized machine cache using three
hash dictionaries to realize three types of mappings:

• uni�cator dictionary, mapping RC pairs to
unique machine stamps. It means that the ma-
chine cache may provide appropriate machine
only if the uni�cator dictionary contains appro-
priate RC key.

• uni�catorRev dictionary, providing the map-
ping inverse to uni�cator (from machine stamps
to RC pairs).

• cache dictionary, mapping machine stamps to
machines. It cooperates with the disk cache:
before a machine is released from memory, it
is �rst saved in the disk cache. Thanks to this,
a single machine instance may be shared in
many places (for example in several complex
machines).

The three hash dictionaries obviously need fast
calculation of hash codes, but as a result, they guar-
antee access to machine in approximated complex-
ity O(|rc|) and independence from the number of
machines in the cache (very important for scala-
bility of data mining systems). This means that
each machine con�guration has to implement two
methods: equality of con�gurations and the hash
function of the con�guration. Provided high quality
of the methods, the maintenance of the uni�cation
system costs very little.

To better see the advantages of machine uni�ca-
tion, imagine a project to test and compare suit-
ability of di�erent feature selection methods for a
classi�cation problem. In the case of our system

14

we will compare feature ranking methods rather
than feature selection methods. To make the test
credible, we should, for instance, perform a cross-
validation (CV) of complex machines consisting of
feature ranking, feature selection and classi�cation
machines. The complex machine could have the
form of Transform and classify machine (see �gure 4)
with transformation scheme replaced by the feature
selection template of �gure 6 �lled with proper fea-
ture ranking. When performing the CV test with
di�erent ranking machines, it may turn out that the
selection of top-most features of di�erent rankings
result in the same set of features, so it makes no
sense to train and test the classi�er twice for the
same data.

Table 1 shows feature rankings obtained for Wis-

Table 1: Feature rankings for UCI Wisconsin breast cancer
data.

Ranking method Feature ranking

F-score 6 3 2 7 1 8 4 5 9
Correlation coe�cient 3 2 6 7 1 8 4 5 9
Information theory 2 3 6 7 5 8 1 4 9
SVM 6 1 3 7 9 4 8 5 2
Decision tree (DT), Gini 2 6 8 1 5 4 7 3 9
DT, information gain 2 6 1 7 3 4 8 5 9
DT, information gain ratio 2 6 1 5 7 4 3 8 9
DT, SSV 2 6 1 8 7 4 5 3 9

consin breast cancer data from the UCI repository
with eight di�erent methods: three based on indices
estimating feature's eligibility for target prediction
(F-score, correlation coe�cient and entropy based
mutual information index), one based on internals
of trained SVM model and four based on decision
trees using di�erent split criteria (Gini index, infor-
mation gain, information gain ratio and SSV [28]).
To test a classi�er on all sets of top-ranked features
for each of the eight rankings, we would need to per-
form 72 tests, if we did not control subsets identity.
An analysis of the 72 subsets brings a conclusion
that there are only 37 di�erent sets of top-ranked
features, so we can avoid 35 repeated calculations.
Very similar savings occur, when the rankings are
determined inside the CV test (for each training
sample, not for the whole data set as in the case of
rankings presented in the table).

Naturally, being aware of saving possibilities, one
can design the project in such a way, that di�erent
rankings are analyzed �rst to check such redundan-
cies and avoid them, but it requires programming a

special machine to perform the test in proper way.
System feature of avoiding repeated calculations,
eliminates the overload without any special e�ort
from the user and is a general and very e�cient so-
lution which may help in many other circumstances.

In advanced meta-learning, it would be highly
nontrivial to predict all the possibilities of repeated
machines and prevent them in advance. For a more
complex example of machine uni�cation advantages
see section 8. To maximize the gains, we have
solved the uni�cation problem at the kernel level of
our system. Each machine created and run within
the project is registered in machine cache. Each re-
quest for a new machine is checked against the ma-
chine cache, whether the machine is already avail-
able and if it is, the machine request is substituted
by the ready machine and the request does not go
to the task spooler. Using hash codes in comparing
di�erent machine contexts makes the cost of ma-
chine cache management very small, so the overall
balance is de�nitely positive.

5.2. Two-tier cache system

Machine cache can be successful if it has access
to as many machines as possible. Thus it is ad-
vantageous to keep all the machines run within the
project, but it may result in too much memory con-
sumption. On the other hand, sometimes we must
deal with so large data and models, that keeping too
many of them in memory at the same time would
thwart even basic tests. Therefore, as mentioned
earlier, our cache system is a two-tier solution. If
possible, machines are kept in memory, but to make
more memory available they are swapped to special-
ized disc cache.

Each machine is saved in the disc cache after its
adaptive process is �nished. It is kept in memory
as long as it is needed by any other machine. The
information interchange through inputs and out-
puts is a subject to open�close management, so
that the system receives all the information about
machines and their outputs being in use. The re-
quirement to open and close machine inputs facil-
itates also optimization of machine exchange be-
tween the project and computational servers run-
ning the project tasks (possibly remote servers).

Additionally, the unique, specialized structure of
the disk cache and its management guarantee that
the access to machines (loading/saving) does not
depend on the number of machines in the disc cache
but just on the length of binary representation of

15

the machine. It keeps the whole uni�cation and
cache system as e�cient as possible.
A question might be asked here: why to intro-

duce a disc cache instead of relying on the oper-
ating system virtual memory mechanisms? The
answer is that our internally managed disk cache
can be much more e�ective, because it can take ad-
vantage of the information about project internal
structure and act without any delay that could dis-
able performing the tasks scheduled in the project.
Moreover, the operating system cache has no infor-
mation about which machines are necessary at the
moment or will be necessary in further steps in con-
trary to our system which has full knowledge about
that, because each machine usage is registered. The
knowledge lets the system decide whether given ma-
chine should be kept in the memory cache or just
in the disc cache or should be completely discarded
from the cache while system's virtual memory sys-
tem has no such information.

5.3. Control over random processes

Another detail which gets quite important when
more advanced data analysis is to be performed,
and which has not been completely solved by any
data mining package we know of, is the way of
random processes management. It is common to
include a seed value (controlling the randomness)
inside con�guration structures of CI algorithms.
Then, the seed value can be set arbitrarily or chosen
randomly (usually on the basis of current time to
provide better randomness). However in the case of
complex machines, it is not satisfactory, especially
when we like the mechanisms of machine uni�cation
to be maximally functional. Our design of seed con-
trol aimed to facilitate:

• uni�cation of complex, multi-level machines,
possibly with pseudo-random behavior of cho-
sen machines at di�erent levels,

• robust comparisons of di�erent CI methods
based on testing them on exactly the same
data, even when the tests are made within dis-
tinct projects.

These two features are not guaranteed, when we
may con�gure machines to use either �xed or ran-
dom seed. For example: when we want to perform
10 repetitions of 10-fold cross-validation, we con-
�gure just one machine providing cross-validation
data, which is to be repeated. If we set the seed
property to ��xed�, each repetition will result in

the same sets of training and test data, and exactly
the same 10-fold CV will be performed 10 times.
If we set the seed to �random� (dependent on the
time), it will not be possible to repeat the same
splits in further tests. What we need is a system
that allows the subsequent CVs to run with di�erent
seeds and makes it possible to repeat the whole pro-
cedure with the same sequence of seeds. The same
need occurs, for example, when we perform a CV
of a neural network initialized by random weights.

For full functionality, we assumed that the seed
con�guration should facilitate three di�erent ways
of seed control:

1. The seed is �xed to a given integer value.

2. The seed value is determined by a pseudo-
random number generator initialized with the
time of machine preparation.

3. The seed is managed automatically by the sys-
tem to re�ect the seed settings of parent ma-
chines.

The third option of automatic seed management
means, that the machines can get di�erent seeds in
a machine branch, but the seeds will depend on the
seed of the root machine of the branch and the child
machine index. So, when we need a 10-fold CV to
be run 10 times independently, but in such a way
that can be repeated at any time, we may set a �xed
seed for the repeater machine, and assign the auto
mode to the seed of the machine generating data for
CV. In such case, each repeated CV will get di�er-
ent seed, but dependent on the seed of the repeater,
providing both diversity of di�erent CV repetitions
and possibility to repeat the whole procedure. The
same 10 times repeated 10-fold CV can be obtained
later with the same con�guration of the seed at the
repeater machine level and automatic setting for
the CV data generator. Moreover, when we repeat
the whole scenario for exactly the same con�gura-
tion of a classi�er, the whole repeater machine may
be uni�ed with the former one, and no calculations
are necessary because the whole structure is already
available.

The possibility of performing tests with exactly
the same training and test data, also in completely
di�erent projects opens the gates to most adequate
comparisons of di�erent machines results including
paired t-test, Wilcoxon test or even McNemar test.

16

6. Task spooler

The task spooler of our system is not a simple
standard queue. To optimize the e�ciency of task
running we have introduced a system of hierarchi-
cal priorities. Each parent machine can assign pri-
orities to its children, so that they can be run in
proper order. It prevents starting many unrelated
tasks in parallel i.e. from too large consumption of
memory and computation time. Because of the pri-
orities and machine uni�cation mechanisms, which
may result in spooling the same task twice with
di�erent priorities, the task spooling system gets
quite di�erent than operating systems task sched-
ulers. The number of tasks may be quite large and
we can not use the policy of equal CPU time grati�-
cation, because it would very often lead to memory
exhaustion. As a result the main part of the spooler
has the form of tree containing nodes with priori-
ties. Apart from the tree, there is a container for
machine requests waiting for machines being run
for the sake of other contexts�when a machine is
being run, other requests for the same machine may
not be run, because it would not obey the rule of
not creating the same machine twice.
When the task gets its turn, it is popped out from

the spooler and, if the machine ordered within the
task, is not currently running, it is created and run.
When a task related to another context of the same
machine is currently running, the new task for the
same machine must wait until the other context is
fully serviced. If the other context �nishes success-
fully, the machine is assigned to all its contexts, oth-
erwise (i.e. the parent machine of the other context
aborted its run) the waiting task is started the same
way as when it is not uni�ed with any other task.
The functionality described above is expressed al-
gorithmically by the following meta-code:

1 Task GetNextTask()
2 {
3 foreach (Task t
4 in waiting_for_another_context)
5 {
6 if (the other context aborted)
7 return t;
8 if (the other context is ready) {
9 t.Status = Substituted;
10 continue;
11 }
12 }
13 while (true) {
14 if (spooler.IsEmpty)

15 return null;
16 Task t = spooler.Pop();
17 if (machine of t is
18 �nished by another context) {
19 t.Status = Substituted; continue;
20 }
21 if (machine of t is
22 running within another context) {
23 waiting_for_another_context.Add(t);
24 continue;
25 }
26 return t;
27 }
28 }

The collection waiting_for_another_context con-
tains the tasks that received their turn to run while
other tasks requesting the same machines were run-
ning (see line 23). When such running task is can-
celed, the tasks from waiting_for_another_context
are processed before the tasks that have not got
their turn yet (see lines 3�12). The main loop, pro-
cessing the spooler, is contained within lines 13�27.
The method GetNextTask is called whenever a task
thread calls for a new task to perform.

After the machine process is �nished, the ma-
chine gets the ready status. It is not the end of the
life of the machine, but from the point of view of
its di�erent states it is the �nal state, in which the
machine results and outputs can be exploited, but
the machine does not change anymore.

We need to stress that the whole machine life
cycle is managed completely automatically. From
the user point of view, only the start and the end
of the path, machine goes through, must be taken
care of, i.e. the user orders a machine providing its
con�guration and inputs bindings, and then just
waits for the machine (or for a collection of sub-
machines) to be ready for further analysis of the
created model(s).

To observe the advantages of our spooling sys-
tem in comparison to standard queue, let's ana-
lyze the progress of calculating 10 repetitions of
10-fold CV to compare classi�cation accuracy of
kNN and SVM algorithms. Such con�guration re-
sults in a repeater machine as presented in �gure 8,
but with 10 distributor schemes instead of 2 and
10 test schemes per distributor scheme, in place
of 2. The resulting machine hierarchy is sketched
in �gure 12. The repeater machine creates 10 dis-
tributor schemes (ds1-ds10) and 100 test schemes
(ts11-ts

1
10. . . ts

10
1 -ts10

10). Each distributor scheme cre-
17

Repeater

ds1 ts1
1

. . . ts1
10

. . . ds10 ts10
1

. . . ts10
10

cv1 k1
1 s1

1 kt11 st11 . . . k1
10 s1

10 kt110 st110
. . . cv10 k10

1 s10
1 kt10

1 st10
1

. . . k10
10 s10

10 kt10
10 st10

10

Figure 12: Repeater submachine tree performing 10 × 10-fold CV of tests de�ned in �gure 8. Notation: ds � distributor
scheme, ts � test scheme, cv � CV distributor, k � kNN, kt � classi�cation test for kNN, s � SVM, st � classi�cation test for
SVM.

ates one cross-validation distributor (cvi) and each
test scheme requests 4 child machines: kNN (ki

j),

classi�cation test of kNN (ktij), SVM (sij) and clas-

si�cation test of SVM (stij).

To avoid randomness of the process due to par-
allel calculation, we assume that all the tasks are
calculated by one task manager with one running
thread. The request for the repeater machine
pushes the root node of the tree (of �gure 12) into
the spooler. When the request is popped out, the
repeater process is run and puts all the repeater
children to the queue: the �rst distribution scheme
(ds1), 10 test schemes (ts11,. . . ,ts

1
10) bound to ds1

outputs, the second distribution scheme (ds2) and
so on. Thus, 110 machine requests go to the queue.
After that, the repeater starts waiting for its chil-
dren and the task manager calls for next task to run
(ds1 is poped). The distributor scheme requests the
CV distributor machine (cv1) and starts waiting un-
til cv1 is ready.

When a standard queue is used as the spooler,
there are 109 requests in the queue before cv1, so
it will be run after all the 109 preceding requests
are popped, run and start waiting after pushing all
their requests for children to the spooler. It means
that when cv1 gets its turn to run, 111 threads are
in waiting mode (the repeater machine and all 110
of its children) and all the 410 machines of the third
level are in the queue. So, the task manager con-
trols 112 task threads. It costs a lot: the operating
system must deal with many waiting threads and
all the started machines occupy memory.

With Intemi spooling system based on tree with
ordered nodes, the history of machine requests and
pops is quite di�erent. Only the begin is similar,
because the repeater machine is popped, run and it
requests its 110 children. Then, ds1 is popped out
and run. It pushes cv1 to the spooler and starts

waiting. Next pop from the spooler returns not ts11
as in the case of standard queue, but cv1, because
the ds1 branch is favored over all the other children
of the repeater. When cv1 is �nished, ds1 can be
�nished too, and ts11 is run. It requests its 4 chil-
dren, which are �nished before ts12 is started, thanks
to the ordered tree based spooling system. As a re-
sult, only two waiting machine processes and one
running may be observed at the same time, so the
task manager controls only 3 threads. This is be-
cause the machines are popped from the spooler in
the following order:

Repeater, ds1, cv1, ts11, k1
1, s11, kt11, st11, . . .,

ts110, k1
10, s110, kt110, st110, . . ., ds10, cv10, ts10

1 ,
k10
1 , s10

1 , kt10
1 , st10

1 , . . ., ts10
10, k10

10, s10
10, kt10

10,
st10

10,

while in the case of a standard FIFO the order is:

Repeater, ds1, ts11, . . ., ts110, . . ., ds10, ts10
1 ,

. . ., ts10
10, cv1, k1

1, s11, kt11, st11, . . ., k1
10, s110,

kt110, st110, . . ., cv10, k10
1 , s10

1 , kt10
1 , st10

1 , . . .,
k10
10, s10

10, kt10
10, st10

10.

Since, thanks to the spooling system, Intemi keeps
just three running machines at a time, both
memory and CPU time are saved signi�cantly.
When running this example on the UCI Wisconsin
breast cancer data, peak memory usage was about
30 MB, while with standard queue it was over
160 MB. Also the overall time used by the project
was signi�cantly reduced (around 15%) although
the calculations were exactly the same�handling
the process with smaller number of threads and less
memory consumption turned out to be so less time
consuming for the operating system.

18

7. Results and query system

Apart from e�cient machine creation and run-
ning, a successful data mining system must provide
tools for handling machine results. From the point
of view of meta-learning applications it is extremely
important to manage the results in a uni�ed way, fa-
cilitating analysis of results of machines completely
unknown to the meta-learners.

As described before, machine outputs are han-
dled in a standardized way, independently of par-
ticular machine peculiarities. Also the results that
are not expected to have the form of outputs, can be
deposited in a standard manner. We have designed
three standard ways of exposing such information:

• depositing to the machine's results repository
by the machine itself,

• commenting machines by their parent ma-
chines,

• commenting machines by commentators.

Putting the results into these repositories is advan-
tageous also from the perspective of memory usage.
Machines can be discarded from memory when no
other machine needs their outputs, while the results
and comments repositories (which should be �lled
with moderation) stay in memory and are available
for further analysis.

The information can be accessed directly (it can
be called a low level access) or by running a query
(de�nitely recommended) to collect the necessary
information from a machine subtree.

7.1. Results repositories

The system creates a results repository for each
machine and the machine can put there the infor-
mation describing the model, the learning proce-
dure etc. Results repositories are dictionaries map-
ping string labels to the results objects. Machines
can add results to their repositories by calling the
AddToResultsRepository method of the derived class
Machine (each machine class is obliged to derive
from it). For example the Classi�cation test ma-
chine adds calculated accuracy to the repository in
the following way:

double accuracy;
... //calculating the accuracy
AddToResultsRepository("Accuracy", accuracy);

There is no limit for the number of elements that
can be put into the repository or their size, however
it is advisable to put there only the most important
information, in order to save memory.

7.2. Parent's comments

Each machine can comment its submachines to
augment further analysis of the submachines struc-
ture. For example, the repeater of �gure 8 com-
ments each of its submachines with labels denoting
which repetition and which CV fold the subscheme
belongs to. Thanks to this, we can run queries �l-
tering appropriate results, for example we can se-
lect all the accuracies of the �rst CV cycle or all the
accuracies of the second folds of each CV cycle etc.
A machine can comment a child with a call to the

AddChildComments method of the Machine class.
The child index, comment label and comment value
must be passed to the method. In the case of the
example mentioned above, the repeater comments
each subscheme with the code:

AddChildComments(givenMachineId,
"Repetition", group + 1);

AddChildComments(givenMachineId,
"Fold", machineId + 1);

7.3. Query

To simplify the management of submachines' re-
sults, which constitute a tree hierarchy, we have
provided tools for quick and easy results collection
and analysis. A series of results selected from a
machine tree can be obtained by running a query.
A query is de�ned by:

• the root machine of the query search (root of
the tree),

• a quali�er i.e. a �ltering object�the one that
decides whether an item corresponding to a
machine in the tree, is added to the result se-
ries or not,

• a labeler i.e. the object collecting the results

objects that describe a machine quali�ed to the
result series.

Running a query means performing a search
through the tree structure of submachines of the
root machine and collecting a dictionary of label-
value mappings (the task of the labeler) for each
tree node quali�ed by the quali�er.

19

For example, consider a repeater machine pro-
ducing a run time hierarchy of submachines as in
�gure 8. After the repeater is �nished, its parent
wants to collect all the accuracies of SVMmachines,
so it runs the following code:

Query.Series results = Query(repeaterCapsule,
new Query.Quali�er.RootSubcon�g(1, 3),
new Query.Labeler.FixedLabelList("Accuracy"));

The method Query takes three parameters: the
�rst repeaterCapsule is the result of the CreateChild
method which had to be called to create the re-
peater, the second de�nes the quali�er and the
third�the labeler. The quali�er RootSubcon�g se-
lects the submachines, which were generated from
the subcon�guration of repeater corresponding to
path �1, 3�. The two-element path means that the
source con�guration is the subcon�guration 3 of
subcon�guration 1 of the repeater. A look at the
repeater con�guration in �gure 7 clari�es, that sub-
con�guration 1 of the repeater is the con�guration
of the test scheme (0-based indices are used) and its
subcon�guration 3 is the SVM Classi�cation test. So
the quali�er will accept all the machines generated
on the basis of the con�guration Classi�cation test
taking Classi�er input from SVM machine. These
are classi�cation tests, so they put Accuracy to the
results repository. The labeler FixedLabelList of the
example, simply describes each selected machine by
the object put into the results repository with label
Accuracy.
As a result we obtain a series of four descriptions

containing mappings of the label Accuracy to the
�oating point value of the accuracy.
We have proposed a number of quali�ers and la-

belers, most likely to be needed by researchers. In-
stead of the RootSubcon�g(1, 3) quali�er, one could
use Con�gType(typeof(ClassTestCon�g)). This
would collect the results for all the machine tree
nodes for which ClassTestCon�g is the con�gura-
tion class i.e. from all the classi�cation test ma-
chines. The result series would contain not four
but eight elements since both Classi�cation test ma-
chines (taking Classi�er input from kNN and SVM
machines) would be quali�ed by the query.
The labelers are given access to the whole path of

machine results: from the query root submachines
to the leaves of the machine tree. Thus, the labelers
can use labels from any level. For instance, the
labeler AllLabels collects all the labels commenting
the whole path. It lets us easily collect, for example,
the accuracies calculated by the classi�cation test

machines and fold identi�ers given by the repeater
machine to its submachines (distribution and test
schemes). Partial results of a n×5 CV are presented
in table 2. The Repetition and Fold entries are the
comments made by the repeater on its submachines.

7.4. Series and series transformations

The result of a query is contained within an ob-
ject of the Series class. The series is a collection
of label-value pairs describing subsequent items. In
the case of the series presented in table 2, each item
is described by three values assigned to the labels
Accuracy, Repetition and Fold respectively.
The series are often just intermediate results that

undergo more or less sophisticated analysis. Each
series can be transformed by specialized objects
called series transformations. The transformations
get a number of series objects and return another
series object. One of the basic transformations is
the BasicStatistics which transforms a series into a
single item series containing the information about
minimum, mean, maximum values and standard de-
viation.
Quite advanced manipulation of series of results

can be performed with groups related transforma-
tions. As mentioned before, when a query uses a
Con�gType quali�er pointing to the con�guration
type of classi�cation test, it collects all the clas-
si�cation test results (regardless which classi�er it
tests�kNN or SVM in the example shown before).
So, a series obtained in this way, contains descrip-
tions of kNN classi�cation tests and SVM classi�-
cation tests, by turns. We can easily create two
groups, separating kNN results from SVN results
with a call to the GroupModulo transformation:

Series inGroups = allresults.Transform(
new GroupModulo(2));

It is also easy to group series items containing com-
mon values for particular label. For example, when
we repeat 7 times a 10-fold CV and collect all avail-
able labels from classi�cation test machines, we can
group the resulting series by the �Repetition�:

Series repets = allresults.Transform(
new Group("Repetition"));

and obtain a series of 7 series containing separated
results of each repetition of the whole CV cycle.
A grouped series can be traversed to transform

each of its subseries. The MAP transformation per-
forms a given transformation on all the subseries.
For example, running the code:

20

Table 2: Partial results obtained with labeler AllLabels for a n× 5 CV.

Item 1 2 3 4 5 6 7 8 9 10 11 . . .
Accuracy 0.93 1.0 0.97 0.93 0.97 0.9 0.97 1 1.0 1.0 0.97 . . .
Repetition 1 1 1 1 1 2 2 2 2 2 3 . . .
Fold 1 2 3 4 5 1 2 3 4 5 1 . . .

Series stats = repets.Transform(
new MAP(new BasicStatistics));

we can calculate basic statistics for all the series
within repets. The result remains a series of series
(as repets was, so it must be ungrouped with the
Ungroup transformation, to obtain a plain series of
basic CV statistics for each repetition.
A shorthand notation is available to speed up

writing code for such manipulations:

Series �atStats = allresults.Group("Repetition")
.MAP(new BasicStatistics()).Ungroup();

One of the labels contained within the series can
be set as the main label. It is necessary for some
transformations to know the default (main) label to
operate on. For example the BasicStatistics trans-
formation calculates the statistics for the values as-
signed to the main label.
There are also basic arithmetic operators avail-

able and they also act on the main label values.
They can be used in a natural manner as in�x op-
erators. The code:

Series di� = kNNResults − SVNResults;

calculates the di�erences of accuracies (assuming,
that the Accuracy is the main label in the series
kNNResults and SVNResults). An example of such
operation on results of 10-fold CV (performed once)
is shown in table 3.
One of the most important aspects of such results

manipulation is easy testing of statistical hypothe-
ses about the results di�erences. Thanks to univer-
sality of proposed ideas, we can easily run statistical
tests like t-test, paired t-test, Wicoxon, McNemar
etc. They are implemented as series transformers,
so it is possible to call just:

Series tTest = new TTest().Transform(
kNNResults, SVNResults);

Series tTestP = new TTestPaired().Transform(
kNNResults, SVNResults);

The results are new series, containing the informa-
tion about the test results. TTest and TTestPaired

transformations return series with single items la-
beled with t value and p value presenting the value
of calculated statistic (t) and the estimated proba-
bility of the null hypothesis (about equality of the
means) being true. The results calculated for the
10-fold CV accuracies from table 3 are presented in
table 4. In this case the t-test allows us to reject

Table 4: Statistical signi�cance tests results.

Test name t-test paired t-test McNemar
statistic 2.370 3.772 12.25
p-value 0.0292 0.0044 0.0005

the null hypothesis with 95% con�dence (α = 0.05),
but not with 99% con�dence (α = 0.01). The
paired t-test, provided with the information about
di�erences in subsequent passes, con�rms that the
results are statistically signi�cantly di�erent with
more than 99% con�dence.
The mechanisms of query and series facilitate

such analyses with very simple means. There
are many more prede�ned series transformations
and new transformations can also be easily imple-
mented.

7.5. Commentators

Queries collect and series transformers analyze
data gathered in results repositories. By default,
machines put in the repositories only the most
important information. Such strategy saves both
memory and computation time. When additional
information is necessary it can be deposited in the
system as a comment on a machine.
Each machine can order a comment on its suc-

cessors at the moment of requesting for creation
of a submachine. To continue the example of
kNN and SVM test, if we need to perform a Mc-
Nemar test of statistical signi�cance of di�erence
between performance of kNN and SVM, we re-
quest comments on both classi�cation tests. The
CorrectnessCommentator comments a classi�cation
test machine with a binary vector of the length

21

Table 3: 5NN and SVN accuracies (in %) for 10-fold CV for UCI image segmentation data.

Fold 1 2 3 4 5 6 7 8 9 10 Mean±St.dev.
5NN 95.2 81.0 90.5 81.0 95.2 81.0 90.5 85.7 90.5 90.5 88.1±5.6
SVM 81.0 76.2 90.5 71.4 81.0 76.2 90.5 76.2 90.5 81.0 81.4±6.9
5NN-SVM 14.2 4.8 0.0 9.6 14.2 4.8 0.0 9.5 0.0 9.5 6.7±5.6

equal to the number of objects in the test data and
containing a 1 for each correct answer and 0 for in-
correct answer. It would be wasteful to generate
and keep such vectors for each classi�cation test
machine, so it can be done on demand by means of
commentators.
This is an example of C# code that compares

classi�cation test results (for the example scenario
testing kNN and SVM) with McNemar test:

Series s = project.Query(repeaterCaps,
new Con�gType(typeof(ClassTestCon�g)),
new FixedLabelList("Correctness"));

s = s.GroupModulo(2).MAP(new Unpack());
Series r = new McNemar().Transform(s[0], s[1]);

First three lines run proper query. The fourth line
groups the results of kNN and SVM and maps the
two groups with Unpack transformation, which un-
folds all the collections of binary results added by
the CorrectnessCommentator into a single, long se-
ries. The �fth line runs McNemar test on the two
long series of correctness binary �ags and returns
the χ2 statistic value and the p value as two values
in a single item series. Last column of table 4 con-
tains the results of the McNemar test run for the
example being discussed.

7.6. How to avoid testing frauds?

Using tools without the mechanisms described in
this article, like uniform representation and man-
agement of simple and complex machines, clear
distinction between the con�guration and runtime
lives of machines, results repositories, queries etc.,
often makes CI research prone to miscellaneous em-
bezzlements. Apparently, some of them are dis-
guised enough to be accepted in numerous scienti�c
articles. The uni�ed view of machines, we have pro-
posed, makes the embezzlements easier to see and
avoid. Of course, it is not possible to completely
prevent the frauds with system level protection, be-
cause that would mean signi�cant restrictions of the
system.
There are many di�erent techniques of data

preparation for �nal adaptive model construction.

Many researchers clearly split the whole data min-
ing process into stages including separate data pre-

processing and �nal learning or testing. It is dan-
gerous, because it suggests that machine general-
ization testing may be performed on preprocessed
data without unjust consequences. As a result there
are many publications describing such unfair ap-
proaches to data mining.
The most common mistake is using supervised

data transformation methods before test-

ing generalization abilities of learning algo-

rithms, instead of including the supervised trans-
formations in a complex model to be tested. The
set of most popular fraud techniques of supervised
data preprocessing include:

• supervised data discretization,

• supervised missing values substitutions,

• supervised feature extraction.

An extreme example of such unfair calculations
would be adding the targets to the data. In such
a case everybody would have no doubt that it is
a cheat. Unfortunately, less radical examples quite
frequently go successfully through the sieve of peer
review processes.
In the list of fraud techniques, we deliberately

emphasize the word supervised. Naturally using
unsupervised methods (for example data standard-
ization) as data preprocessing, before testing gener-
alization is not a cheat, although would also be a bit
strange in practical applications. For instance, in
medicine, usually data is gathered for some time pe-
riod to enable training of adaptive machines. When
models are created, they are used to classify new
data collected for new patients. Standardization of
the whole data, which is the union of training and
test data sets, would require waiting until all the
data, we want to classify, is collected. After that
the machines would be trained and the decisions
for all the new patients determined. So if we want
to simulate practical application of machine learn-
ing tools, we should treat all the data manipulation

22

before training as a part of the training process and
in the case of cross-validation, repeat the whole pro-
cedure from the very beginning for each CV fold.
However, assuming the training data is represen-
tative for the whole population, unsupervised data
preprocessing methods like di�erent forms of nor-
malizations, give very similar results on the whole
data and the training part, and the di�erences are
very unlikely to a�ect the further validation results.
An example of a fraud technique is �lling missing

values in a supervised manner within the data pre-
processing stage. If we allow the method to be su-
pervised, we could create a method to �ll the miss-
ing values with the class label of the particular data
object. It would introduce very precious informa-
tion and signi�cantly decrease the estimated errors.
In an extreme case, we could delete all the values of
a feature and then �ll the missing values (obtained
this way) by the class label. Then, simple identity
function would be perfect classi�er, but what would
we need to do with new data to be classi�ed? We
should do the same we did for the training data i.e.
put the class label in proper place, so we would need
to now the class label in order to predict it. It is
important to notice, that �lling missing values with
the mean values observed within the adequate class
is practically equivalent to �lling with the class la-
bels, since, almost always, the means are unique for
particular classes, so they are equally informative as
class labels.
Another example of in�uence of supervised data

preprocessing on validation result may be adding
new, more informative features, on the basis of an
analysis of a model built for the whole data set. For
example: SSV decision tree algorithm [28] produces
a very simple and relatively very accurate descrip-
tion of the appendicitis data from UCI repository:

if HNEA < 7520.5 ∧ MBAP < 12 then class 2 else
class 1.

The rule accuracy calculated for the whole set is
91.5%. Extending the original data, by adding a bi-
nary feature corresponding to the value of the rule
premises, introduces the knowledge gained by SSV
(by an analysis of the whole data set) to the data.
Therefore, most classi�ers can �nd the information
and reach the CV test accuracy of up to 91.5%�
of course the SSV decision tree does, while when
trained in a fair way, its average CV accuracy is
about 86.1%. So the alleged CV test result is in
fact the reclassi�cation accuracy. It is a less spec-
tacular and less obvious example than adding the

target as one of the features, but reveals the same
vulnerability.
Even unsupervised transformation, when used as

preprocessing, may be very dangerous. For exam-
ple, a typical cure for small number of instances is
multiplication of instances (sometimes with addi-
tion of a bit of noise) to enable learning of some
machines. When this transformation is used before
separation of testing data part, it causes that we
can �nd the same instances in training and testing
data1. As a result, if the multiplication is metic-
ulous, the miracle is nearly guaranteed, especially
with machines like 1NN, which will �nd original

clone-instances as nearest neighbors.
Another abuse in data mining is using single ex-

ternal test �les for numerous machine tests. Al-
though in the case of di�erent contests it seems the
best way of estimation of models' generalization
abilities, it is not good to select the test data in
data sets distributed with test data targets. An ex-
treme example, in this case, is a �learner� that does
not learn, but simply guesses the target model. It is
just the matter of su�ciently high number of trials,
to �nd a model performing perfectly on the test set.
But it would no longer be a fair result, because we
have selected a model on the basis of its behavior
on the test data i.e. we have used the test data for
a peculiar type of training.
In the case of the hypothyroid data from the

UCI repository, SSV decision trees (with some
manipulation of parameters) reach 99.73% accu-
racy in reclassi�cation of the training data and
99.09−99.36% when classifying the �test data�. The
success of the most accurate con�guration param-
eters can not be regarded as fair, since we would
never guess that it is so accurate model, if we had
not checked it on the test data. Similarly with a
kNN machine equipped with mechanisms of feature
weighting, one can obtain almost as good results as
with SSV decision tree, but running a CV on the
union of training and test sets results in de�nitely
lower results, showing that the model with weight-
ing was so accurate, as a result of a coincidence.
Training and testing machines many times, just
makes �nding an accurate model more and more
probable.

For more about trustful and successful methods
of testing and parameter or transformation combin-

1In the cases of adding noise, very similar instances can
be found.

23

ing please read [29, 30]. These articles show how to
successfully deal with real problems by examples of
challenges in data mining.

8. Meta parameter search

One of the �rst steps toward advanced meta-
learning is a machine capable of e�cient searching
in the space of model parameters. Di�erent data
mining systems introduce such tools, but the im-
plementations are either very limited or look like
external patches that do not �t the overall inner
architecture. Shortages of the engine level design
do not allow for advanced meta-learning in a natu-
ral way. In our approach the meta-learning require-
ments decided about many solutions at the engine
level of the system (e.g. those presented in preced-
ing sections), so meta-learning machines are built
in the same manner as all other machines and are
nothing special also from the point of view of system
operation. Simple parameter search machine is the
�rst step toward more sophisticated meta-learning
and constitutes a good illustration of cooperation
of di�erent mechanisms described above.
The aim of the meta parameter search (MPS)

machine is to repeatedly create a submachine and
test di�erent values of parameters included in the
submachine con�guration. Our algorithm of the
MPS machine allows for arbitrarily complex subma-
chine and can search for optimal values of param-
eters of any part of the submachine con�guration
hierarchy (any depth etc.).
The con�guration of the parameter search ma-

chine includes:

• test con�guration de�ning arbitrarily com-
plex machine structure,

• scenario of parameter changes,

• query speci�cation which determines the
way of estimation of the test results.

The process realized by the parameter search ma-
chine creates a sequence of submachines for the test
con�guration with some parameters changed each
time, according to the con�gured scenario. In each
pass, it:

• gets a candidate con�guration from the sce-
nario object,

• creates a submachine to test the con�guration,

• runs a query on the submachine branch to col-
lect proper results,

• transforms the series of values resulting from
the query by given series transformer to obtain
the �nal measure of the con�guration parame-
ters performance,

• passes back the performance result to the pa-
rameter changes scenario object, so that it can
adjust the process of producing subsequent ma-
chine con�gurations.

Normally, the test submachine con�guration de�nes
the whole test process, e.g. multiple training and
test of a classi�er, so it is convenient to derive it
from a test template scheme, introduced in sec-
tion 3.5, by �lling placeholders with proper machine
con�gurations e.g. putting classi�er con�guration
within a cross-validation test template.
The parameter search scenario may just iterate

over a set of possible values of a parameter or per-
form a sophisticated process exploiting specialized
meta-knowledge and the feedback from subsequent
tests. Although it is not possible to de�ne a single
scenario that would guarantee satisfactory results
in a short time, machine authors may de�ne de-
fault scenarios for machine parameters i.e. the de-
fault way of searching for optimal parameter values
(suggestions of scenarios that should perform well
on average).
The following source code presents an application

of the MPS machine:

1 DataLoaderCon�g dCfg =
2 new DataLoaderCon�g();
3 dCfg.InputFileName = "breast−cancer.dat";
4 Capsule dCaps =
5 project.CreateMachine(dCfg, null, null);
6

7 RepeaterCon�g rCfg = new RepeaterCon�g();
8 rCfg.SetCVDistributor();
9 rCfg.TestScheme.Add(0, new StdCon�g(),
10 new Bindings().Bind("Data", "Training data"));
11 rCfg.TestScheme.Add(1,
12 new SVMClassi�erCon�g(),
13 new Bindings().Bind("Data", 0, "Data"));
14 rCfg.TestScheme.Add(2,
15 new ExtTransformationCon�g(), new Bindings()
16 .Bind("Data", "Test data").Bind("Transformer",
17 0, "Transformer"));
18 rCfg.TestScheme.Add(3, new ClassTestCon�g(),
19 new Bindings().Bind("Data", 2, "Data")

24

20 .Bind("Classi�er", 1, "Classi�er"));
21 rCfg.CVParams(5, 2);
22

23 ParamSearchCon�g psCfg =
24 new ParamSearchCon�g();
25 psCfg.TestingCon�guration = rCfg;
26

27 int[] subcfgPath = new int[] { 1, 1 };
28 StepScenario_D SigmaScenario =
29 new StepScenario_D(subcfgPath,
30 new string[] { "Kernel", "Sigma" },
31 StepScenario_D.StepTypes.Power2, −12, 2, 8);
32 StepScenario_D CScenario =
33 new StepScenario_D(subcfgPath,
34 new string[] { "C" },
35 StepScenario_D.StepTypes.Power2, −1, 2, 7);
36 psCfg.Scenario = new StackedScenario(
37 StackedScenario.StackTypes.Grid,
38 new IScenario[] { SigmaScenario, CScenario });
39

40 psCfg.QueryDe�nition = new QueryDe�nition(
41 new Intemi.Query.Quali�er.RootSubcon�g(1, 1),
42 new Intemi.Query.Labeler.FixedLabelList(
43 "Accuracy"),
44 new Intemi.Query.BasicStatistics());
45

46 Capsule psCaps = project.CreateMachine(psCfg,
47 new Bindings().Bind("Data", dCaps, "Data"),
48 null);
49 project.WaitAll();

Lines 1-5 de�ne con�guration of data loading ma-
chine and order the machine. Lines 7-21 prepare
con�guration of a repeater performing 5 times 2-
fold cross-validation of an SVM machine trained on
standardized training part of CV data and tested
on the test part after standardization performed ac-
cording to the statistics calculated for the training
data. Thus the machines built for StdCon�g and
ExtTransformationCon�g are put inside the repeater
test scheme. The repeater con�guration is then (in
line 25) passed to the con�guration of the MPS ma-
chine as the con�guration of test procedure.

Lines 27-38 de�ne the scenario of the parameters
search process. The search has a form of a grid (see
line 37), i.e. each declared value of the Gaussian ker-
nel function σ parameter is tried against each de-
clared value of the C parameter. Both parameters
belong to the SVM machine, which is identi�ed by
the path 1, 1 (see lines 27, 30 and 33) of subcon-
�gurations of the MPS testing con�guration (the
testing con�guration is the repeater de�ned in lines

7-21 and indices are 0-based, so the repeater's sub-
con�guration 1 is its test scheme containing SVM
con�guration as subcon�guration 1�see line 11).
Both parameters are of exponential nature, so we
explore the sets {2i : i = −12,−10, . . . , 4} and
{2i : i = −1, 1, 3, . . . , 11}. The sets speci�ca-
tion is contained within lines 31 and 35, containing
the declaration of the exponential type, start ex-
ponent, step (the increment of the exponent), and
how many values are to be tried. We have pro-
vided also many other prede�ned parameter search
scenarios and completely new scenarios can also be
easily added.
Lines 40-44 specify the query to collect each test

results and the transformation of the resulting se-
ries to another series obtaining the �nal estimate
of the con�guration performance. The estimate im-
plemented here is simply average accuracy obtained
within the repeated CV test (BasicStatistics trans-
formation calculates mean value, minimum, maxi-
mum, standard deviation etc. setting the mean as
the main label of the resulting series). The results
obtained with the code, are presented in table 5.
They are available as an output of the parameter
search machine after the whole process is �nished.
Finally, lines 46-49 order the MPS machine from

the project and wait for all the machines to �nalize
their processes.
The project takes care for all the machines that

must be built to provide the requested machine.
It creates subsequent machine tasks, when it can
be determined that such a machine must be cre-
ated, and wherever possible, reuses machines cre-
ated earlier with the uni�cation mechanism. In
this project the repeater is performed many times
with changed con�guration of the SVM machine
but without changes to the con�guration of the CV
processes. Thus many submachines in this project,
e.g. responsible for data splits, are reused to save
time and memory.
The project con�guration is visualized in �g-

ure 13. At run time, a single Data loader and a
single Meta parameter search are created. Within
the MPS process, a Repeater machine is created for
each of the 56 = 8×7 pairs of parameters. Each
repeater performs 5×2 CV, so it creates 5 dis-
tributor schemes and 10 test schemes. Thus, the
overall number of needed machines is quite large.
Thanks to the uni�cation framework (described in
section 5), the number of machines that are really
created and run is signi�cantly smaller. The num-
bers are presented in table 6.

25

Table 5: Meta parameters search results for SVM tested by 5×2-fold CV on Wisconsin breast cancer data.

C Gaussian kernel σ
0.0010 0.0039 0.02 0.06 0.25 1 4 16

0.5 0.6635 0.9393 0.9642 0.9671 0.9674 0.9588 0.9419 0.8798
2 0.9396 0.9645 0.9677 0.9665 0.9659 0.9605 0.9508 0.9159
8 0.9645 0.9677 0.9668 0.9645 0.9591 0.9479 0.9508 0.9159
32 0.9677 0.9668 0.9634 0.9474 0.9428 0.9451 0.9508 0.9159
128 0.9674 0.9617 0.9456 0.9413 0.9322 0.9422 0.9508 0.9159
512 0.9617 0.9474 0.9428 0.9365 0.9293 0.9416 0.9508 0.9159
2048 0.9476 0.9416 0.9391 0.9339 0.9273 0.9416 0.9508 0.9159

Data loader

Data

Meta parameter search

Data

Repeater

Data

Distributor scheme

Data
Training data

Test data

Test scheme

Training data
Test data

CV distributor

Data
Training data

Test data

Standardization

Data
Data

Transformer

SVM

Data Classifier

Kernel provider scheme
Kernel provider

Data Kernel provider

External transformation

Data

Transformer Data

Classification test

Data

Classifier

Figure 13: Meta parameter search project con�guration, corresponding to the source code.

We consciously did not extend table 6 with
columns describing other data mining systems, be-
cause no other system is able to reuse machines,
and even if one were 10% faster in the �rst learning
of given machine, it would not be faster after next
computation of the machine, since our system is
able to reuse machines so serving repeated requests
costs almost nothing. Learning processes are some-
times really CPU consuming and this problem can
not be trivially neglected.

It can be easily seen in table 6, which machines
are reused many times: distributor scheme, CV dis-
tributor, standardization, external transformation,
kernel provider scheme and kernel provider. In-
deed, there is no point in repeating CV data dis-
tribution for di�erent repeater instances, since each
time the data split is the same. So only 5 di�erent
CV data pairs are needed�the repeater performs
5 independent splits. Similarly the training and
test data coming as test scheme inputs are cycli-
cally repeated, so only 10 di�erent standardization

machines and 10 di�erent external transformation
machines are necessary.

A nice surprise, can be the uni�cation of the SVM
kernel calculations. Our realization of the SVMma-
chine, extracted kernel calculations to a separate
machine (submachine of SVM) to enable multiple
use of the same kernel table. More precisely, as
visible in �gure 13 SVM de�nes the Kernel provider
scheme which can be �lled with any machine struc-
ture providing kernel calculation interface. In our
test, the scheme contains a single Kernel provider
machine which outputs Gaussian kernel calculation
routine. We run SVMs with di�erent parameters
of C and Gaussian kernel σ. Two SVM machines
trained on the same data with di�erent C param-
eter and the same σ may share the kernel table
(i.e. use the same Kernel provider scheme and Kernel
provider). Thus, only 80 di�erent kernel tables are
needed in the project (8 di�erent values of σ and
10 di�erent training data sets).

As a result of all the savings, out of 4538 ma-
26

Table 6: Numbers of machines that exist in the project log-
ically and physically.

Machine
logical
count

physical
count

Data loader 1 1
Meta parameter search 1 1
Repeater 56 56
Distributor scheme 280 5
CV distributor 280 5

Test scheme 560 560
Standardization 560 10
External transformation 560 10
SVM 560 560
Kernel provider scheme 560 80
Kernel provider 560 80

Classi�cation test 560 560
Sum 4538 1928

chines comprising the project there are only 1928

di�erent machines. Naturally it means completely
di�erent peak memory usage: more than 250 MB

and less than 60 MB respectively. Moreover, less
machines to be created and run, means also time
savings: the analysis described above, for Wiscon-
sin breast cancer data, with machine uni�cation
takes just 10.5 s while without uni�cation it takes
16.5 s of a 2 GHz CPU. So di�erent ratios describ-
ing savings in the number of machines, memory oc-
cupation and CPU time consumption result from
the fact, that the machines that were uni�ed in this
project need much memory, but little time (the dis-
tributors that split data and data standardization
machines; even SVM kernel providers did not a�ect
the result signi�cantly though their complexity is
O(n2) in both space and time).

The uni�cation possibilities are detected auto-
matically and no algorithm is run twice with the
same parameters, saving time and memory dur-
ing project run and time of machine implementers,
since they do not need to predict when exactly ma-
chines can be reused.

Currently, we have also several more advanced
meta-learning tools, but we do not describe them
in detail in this article, since here we concentrate
on advantages of proper engine level solutions, from
the point of view of memory and time savings.

9. Summary

Our plans of advanced meta-learning bore the
need for very e�cient data mining framework capa-
ble of handling very large projects. Although some
kinds of meta parameter search are available in
some systems available today, it would be very dif-
�cult to go forward to more complex meta-learning
applications. Therefore, we have designed and im-
plemented Intemi as a new versatile data analy-
sis architecture, devoid of numerous drawbacks of
other systems. The uni�ed view of computational
machines made meta-level analysis as simple as
object-level processes. It opens gates to more ad-
vanced, trustworthy and successful research includ-
ing very complex meta-learning and miscellaneous
applications.
Here, we have described some of the crucial mech-

anisms of the new framework, including unprece-
dented solutions in machine representation, ma-
chine life cycle, task management (spooling and
running), machine uni�cation, results management
and query system. The uni�cation system guaran-
tees that no machine process is run twice and no
identical models are kept in memory. This yields
very signi�cant savings in time and memory con-
sumption. Task spooling and running is also de-
signed with special care about e�cient usage of
CPU time and available memory. Uniform results
repository with specialized query language and rich
set of series transformations provide robust tools
for meta-level analysis of performed processes. All
these features, augmented with two-tier cache sys-
tem and other interesting solutions make the system
unique in the realm of data mining frameworks.
The example of meta parameter search machine

depicts how some of the new features of our system
work in practice. Currently developed applications
take even more advantage of the novel architecture,
since the meta parameter search tool is just a start-
ing point of the advanced data mining, feasible with
Intemi.
We are currently working on more advanced

meta-learning procedures performing

• general analysis of broad collections of diverse
object-level learning algorithms,

• specialized explorations in some subgroups of
machines like decision tree based classi�ers,

to learn more on meta-level behavior of the algo-
rithms and to improve object-level learning gains.

27

We also plan to prepare the system for distribu-
tion to a broad range of researchers. To make it
possible, we need

• a fully-functional graphical user interface, to
make all the possibilities available to the users
not keen on programming, i.e. without the ne-
cessity to write any code,

• a thoroughly documented Software Develop-
ment Kit, including wizards to support most
common implementations of machines, queries
etc.

It may also become sensible to create an external,
large machine cache, also available on-line, to avoid
repeated comparisons between di�erent projects.
These shall signi�cantly reduce the time necessary
for versatile tests of new meta-learning approaches.

References

[1] N. Jankowski, K. Gr¡bczewski, Learning machines, in:
I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh (Eds.), Fea-
ture extraction, foundations and applications, Springer,
2006, pp. 29�64.

[2] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classi�-
cation, 2nd Edition, Wiley, 2001.

[3] T. Mitchell, Machine learning, McGraw Hill, 1997.
[4] C. M. Bishop, Neural Networks for Pattern Recogni-

tion, Oxford University Press, 1995.
[5] S. Haykin, Neural Networks - A Comprehensive Foun-

dation, Maxwell MacMillian Int., New York, 1994.
[6] V. Cherkassky, F. Mulier, Learning from data, Adaptive

and learning systems for signal processing, communica-
tions and control, John Wiley & Sons, Inc., New York,
1998.

[7] R. Schalko�, Pattern Recognition: statistical, struc-
tural and neural approaches, Wiley, 1992.

[8] J. P. M. de Sá, Pattern Recognition. Concepts, Methods
and Applications, Springer Verlag, 2001.

[9] T. Hastie, R. Tibshirani, J. Friedman, The Elements
of Statistical Learning: Data Mining, Inference, and
Prediction, Springer Series in Statistics, Springer, 2001.

[10] B. D. Ripley, Pattern Recognition and Neural Net-
works, Cambridge University Press, Cambridge, 1996.

[11] B. Schölkopf, A. Smola, Learning with Kernels, MIT
Press, Cambridge, MA, 2002.

[12] I. Guyon, Nips 2003 workshop on feature extraction,
http://www.clopinet.com/isabelle/Projects/NIPS2003
(Dec. 2003).

[13] I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh, Feature ex-
traction, foundations and applications, Springer, 2006.

[14] I. Guyon, Performance prediction challenge,
http://www.modelselect.inf.ethz.ch (Jul. 2006).

[15] B. Pfahringer, H. Bensusan, C. Giraud-Carrier, Meta-
learning by landmarking various learning algorithms,
in: Proceedings of the Seventeenth International Con-
ference on Machine Learning, Morgan Kaufmann, 2000,
pp. 743�750.

[16] P. Brazdil, C. Soares, J. P. da Costa, Ranking learning
algorithms: Using IBL and meta-learning on accuracy
and time results, Machine Learning 50 (3) (2003) 251�
277.

[17] H. Bensusan, C. Giraud-Carrier, C. J. Kennedy, A
higher-order approach to meta-learning, in: J. Cussens,
A. Frisch (Eds.), Proceedings of the Work-in-Progress
Track at the 10th International Conference on Inductive
Logic Programming, 2000, pp. 33�42.

[18] Y. Peng, P. Falch, C. Soares, P. Brazdil, Improved
dataset characterisation for meta-learning, in: The
5th International Conference on Discovery Science,
Springer-Verlag, Luebeck, Germany, 2002, pp. 141�152.

[19] J. S. Gero, G. J. Smith, Context, situations, and design
agents, Knowledge-Based Systems 22 (8) (2009) 600�
609.

[20] R. Lowry, Concepts and appli-
cations of inferential statistics,
http://faculty.vassar.edu/lowry/webtext.html (2005).

[21] W. Duch, Software and datasets,
http://www.is.umk.pl/�duch/software.html (2006).

[22] KDnuggets, Software suites for Data
Mining and Knowledge Discovery,
http://www.kdnuggets.com/software/suites.html
(2009).

[23] I. I. Bittencourt, E. Costa, M. Silva, E. Soares, A com-
putational model for developing semantic web-based
educational systems, Knowledge-Based Systems 22 (4)
(2009) 302�315.

[24] M. Gaeta, F. Orciuoli, P. Ritrovato, Advanced ontol-
ogy management system for personalized e-learning,
Knowledge-Based Systems 22 (4) (2009) 292�301.

[25] Institute of Parallel and Distributed High-Performance
Systems (IPVR), Stuttgart Neural Networks Simulator
(SNNS), http://www.informatik.uni-stuttgart.de/ipvr-
/bv/projekte/snns/snns.html.

[26] N. Jankowski, K. Gr¡bczewski, Building meta-learning
algorithms basing on search controlled by machine's
complexity and machines generators, in: IEEE World
Congress on Computational Intelligence, IEEE Press,
2008, pp. 3600�3607.

[27] K. Gr¡bczewski, N. Jankowski, Meta-learning with ma-
chine generators and complexity controlled exploration,
in: Arti�cial Intelligence and Soft Computing, Lecture
notes in computer science, Springer, 2008, pp. 545�555.

[28] K. Gr¡bczewski, W. Duch, The Separability of Split
Value criterion, in: Proceedings of the 5th Conference
on Neural Networks and Their Applications, Zakopane,
Poland, 2000, pp. 201�208.

[29] K. Gr¡bczewski, N. Jankowski, Mining for complex
models comprising feature selection and classi�cation,
in: I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh
(Eds.), Feature extraction, foundations and Applica-
tions, Studies in fuzziness and soft computing, Springer,
2006, pp. 473�489.

[30] N. Jankowski, K. Gr¡bczewski, Handwritten digit
recognition � road to contest victory, in: IEEE Sympo-
sium Series on Computational Intelligence, IEEE Press,
USA, 2007, pp. 491�498.

Contents

1 Introduction 1

28

2 Why yet another data mining system

was indispensable 2

3 System architecture and information

exchange 6

3.1 Scheme machine 7
3.2 Transform and classify machine . . . 7
3.3 Feature selection and rankings . . . 8
3.4 Repeater machine 9
3.5 Con�guration templates 9

4 Machine life cycle 10

4.1 Input bindings 10
4.2 Inputs readiness guard 11
4.3 Resolved input bindings 12
4.4 Uni�cation within the machine cache 12
4.5 Task spooler 12
4.6 Task running 13

5 Machine uni�cation and machine

caches 13

5.1 Machine uni�cation 13
5.2 Two-tier cache system 15
5.3 Control over random processes . . . 16

6 Task spooler 17

7 Results and query system 19

7.1 Results repositories 19
7.2 Parent's comments 19
7.3 Query 19
7.4 Series and series transformations . . 20
7.5 Commentators 21
7.6 How to avoid testing frauds? 22

8 Meta parameter search 24

9 Summary 27

29

