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Abstract— With growing amount of data gathered nowadays, Il. THE CONTEST DATA
the need for efficient data mining methodologies is getting
more and more common. There is a large number of different ~ The data we analyze here was prepared by organizers of the
classification algorithms, but choosing the best one for gan data |CAISC’06 conferenck It was the subject of a handwritten
is still a difficult task. Thanks to different data mining contests digit recognition competition organized in parallel to txen-

we can gather lots of meta level information about classifidéon . .
problems and strategies leading to optimal (or close to optnal) ference. The organizers extended the data originally peepa

solutions. One of the contests was organized in parallel witthe PY members of the Bogazici University, Istanbul, Turkey, [2]
ICAISC'06 conference held in Zakopane. We took part in it, [3]. The resulting set of data vectors was split into two part
and our model classified the test data with the highest accuy. One of them contained 80% of the data (5036 vectors) and
e e o s PIYSG he fole of the tining st The rest (20% - 1263
(fr?)m the point F())f view gf suitability to the data). This@arti cle examples).of_the_ data became avallable at the tlm(.a of the
presents our road to the winner model with numerous comments contest adjudication and served as the test set to estifmate t
on both successful and unsuccessful efforts. It also pressnour —accuracy of models on (so called) unseen tata
model testing methodology, which always plays important ri Originally the data vectors were prepared in two versions:
in the pursuit of accurate and well generalizing models. dynamic and static. The dynamic representation of a digit
consisted of a number of 2D coordinates corresponding to pen
movement. This form of the data has not been available to us.
. INTRODUCTION The static representation has the form of a bitmap resulting
from blurring 32 by 32 pixel monochromatic images and then

Thorough analysis of particular data always requires usitigduction of resolution to 8 by 8 pixels. Each final pixel is

a multitude of different techniques. The data set we analydescribed by an integer from the intervi@l 16|, since the
here defines a classification task, so we need to: value is the number of black pixels in an appropriate 4 by 4
) L ) pixel part of the blurred image. The data preprocessingstg

- applydifierent classification algorithms, . depicted schematically in figure 1, which we copied from [2]

+ try different data transformations before the classifi- it authors permission. The original split of the data sasw
cation stage (from some simple and basic ones 10 SORgeent than the contest one. The authors divided theideda
advanced functions constructed for the particular task)¢y r sets: one for training (1934 examples), one for vaiaat

« apply areasonable testing methodology(for model ¢5jieq cross-validation in [2] but such name is misleagding
validation). this set consists of 946 examples) and two sets for testing

To efficiently search for accurate models we need a dd@ne calledwriter-dependentvith 943 examples and the other
mining environment facilitating complex models constioief  Writer-independentith 1797 data vectors—the former one
easy application of many learning algorithms of differergontained digits written by the same 30 authors, who wrote
types, performing validation in a simple way and possibifne digits of the training and validation sets, and the fatte
providing some tools for meta-level learning (like seanchi contained digits written by another 14 authors).
in the space of models). Some examples of data vectors are shown graphically in
Our efforts were supported by theH@STMINER system, figure 2. For each class (there are 10 classes represergitgy di
which is a general tool for data mining developed by our teafthl: -+ 9) we show two examples: one very readable and one
in cooperation with FQS Poland [1]. The system provides dlf the 1ess “obvious” cases). The figure shows 8 by 8 pixel
the fu_nctiong mentioned above. In the area of metfa-learining LeASe: e Bt | ol Cont -
contains a simple parameter search algorithm, which afhou_ 1°A1SC %%f‘;"gsortnsutir'%,theg‘?;”;gﬁggancgnp‘zrl‘;%eir?rJ‘ ol el

performing a greedy search is very helpful in exploring th% 2During the contest, the test part was provided without clabsls—the
space of model parameters. labels were disclosed after the adjudication.
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Fig. 2. Training data examples.

maps representing the 64 feature values with differentesegr

of grey—white squares present the value of 0 and black onesrhe same comments apply to classification results published
the maximum value of 16. As it can be seen in the figurg, nymerous articles, where an accuracy obtained for a sep-
the classification decisions are not always clear for humal}gie test set is presented, e.g. many publications cdngern
so we should not expect the computational intelligence (yme of the UCI repository data [4]. New models improve

classifiers to be 100% correct. classification of the test data by one or two examples, and are
commented as significantly better models while there is no
Ill. TESTING METHODOLOGY statistical evidence to claim so. It must be emphasized,itha

Prediction of which model will be the most accurate whesUch cases the test set is in fact an extension of the training
applied to data unavailable (unseen) during the analysistis set—although it is not used directly in the adaptive processes

a simple task. We must validate models we create, but tH[Z_,model training, it is u_sed_for final _m_odel selection which
exact way of doing it is not self-evident. One of the modpust be seen as a s_pemal kind of training. As a consequence,
popular is to detach a validation set and estimate the acgurgUch results overestimate the accuracy on unseen data.

on unseen data by the accuracy obtained for this validation® separate test set is a very good solution in the case of
set. This is a simple method, which does not consume mugferent competitions, but it is a completely differertusition
computation time, however it is not a reliable validatiorfhan in the case of validation. The competitors can not try
To see this consider a classification task and a family Bfultiple models and select those which obtain the besttesul
models, which obtain similar accuracy on the training datfor the test set, because the contest organizers do notspubli
but have different decision borders—for example we carkthiiest data labels before the adjudication.

of simple linear discriminant models with different deoisi  Much more reasonable way of model validation is based on
borders. Such models will usually obtain different reséitts the cross-validation (CV) technique. A CV performed within
the validation data set. If such family is large, the probghdf the training set provides an estimation of the accuracy for
finding a model very accurate in classification of the val@at unseen data (the average accuracy obtained for the validati
data is quite high, so trying large number of candidate mnodglarts of CV folds). Although such CV estimates are not perfec
leads to small validation errors, but not necessarily guaes (the limited number of data affects the independence of the
small errors on unseen data in general. As an extreme exam@¥ results), they are much better than those measured for
we can think of a family of models generated randomly. If wa single validation set, because the validation part in each
tried many times, we would certainly get an accurate model ffold is different and determined randomly, so it is much more
validation data, but such technique is no longer a valigatioprobable that a method obtaining high CV scores provides
but rather learning on the validation data. good generalization. Moreover, in most interesting cases,



can repeat CV test to overcome the possible problem ofln the next step we tried to determine the optimum value of
accidental distribution. k via internal cross-validation. Internal cross-validatimeans

In our approach, we used different numbers of folds in Cthat it is run within the training data. It turned out, thaeth
The larger the number of CV folds, the more computatiorange of the optimunk is more or less the intervé, 6]. So,
time is required, but the more similar training conditiome a the initial value was quite a good try.
provided. On the other hand, the larger number of CV folds theThe kNN was also tested with different distance measures
less independent are the models generated in the CV procéke, Minkovsky (with different scales, including 1 for Man-
because the common part of the training sets gets larges, Thattan), Chebychev and Canberra. However the results were
determination of the optimum number of folds is not trivial. similar or worse than for standard Euclidean metric.

Thanks to cross-validation we obtain the information about In another test the training data set was standardized be-
average test accuracy and also about the variance of th&se running the KNN. The standardization was performed
results. High average test accuracy is not the only aim wgeparately for each featurpgf feature standardizatignThe
strive to. To be confident about high accuracy on the contessults are
test set, we need a method showing small variance within the
CV. Hence, our model selection criterion is usually not just St |_kNN’ K=5 .
the value of average accuracy, but the value decreased by aXCV' 0.045+ 0.009 TE: 0.044
guantity related to the standard deviation:

It means that the standardization made the accuracy deteri-
Su=Ay — a0y, (1) orate. This is not surprising, because each feature regeese

) ) intensity of a given region of digit. For example the top left
whereA,, is the average accuracy obtained for metMdy,  comer will show significantly less variance than some pixel
is the standard deviation arais a control parameter (in our j, the middle of the image, and this is a precious information
approaches we usually set=1). Such technique is sound,ye |ose with per feature standardization. Other methods lik
with statistical approaches like hypotheses testing. per data set standardizatiqeach feature is scaled with regard

IV. TOWARD THE WINNER SOLUTION to the overall average and variance within the data set) or no
caling at all are much more useful.

The starting point of the search for the best model is B :
test different base methods. By the base methods we meanOur second base method was Naive Bayes (NB). Unfortu-

a group of complementary methods which are derived frc)nately, it is very rare when the NB is among the best methods.

different computational intelligence fields such as maehiriiIhe results without and with standardization are:

learning, statistics or neural networks. The complemégtar  Naive Bayes
constraint is very important because otherwise, the sefarch XCV: 0.848+ 0.012 TE: 0.853
optimal (or suboptimal) solution may take unnecessarilgimu
time or may finish with poor results.
During the search procedure, we have always paid the most Std | Naive Bayes
attention to the criterion (1) to select the most promisiingj. ( XCV: 0.1614+ 0.018 TE: 0.154
most accurate and stable) methods. . ] )
In the first phase of searching the following methods were The third method, we tried, was Support Vector Machine
tried: k Nearest Neightbors [5], Naive Bayes [6], SuppokSVM). Our implementation of SVM is based on the SMO
Vector Machine [7], [8], [9], SSV decision tree [10], [11]’algor|thm proposed by Platt [14] with modifications propibse

NRBF [12] and FSM [13]. by Keerthi [15]. SVM is a binary classifier and to use the SVM
for 10-class problem a committee of SVMs must be used. For
A. Base methods most benchmarks it is not important whether to usedhe-

The results presented below are the validation results @éss against the resicheme (buildindN classifiers, wher&l
10-fold cross-validation. In most cases the CV procedure wis the number of classes) or to usee class against one class
repeated 10 times and results (errors and standard dexsjticand to build(}) classifiers. The results for trene against the
were averaged. Such tests are denoteX®Y . In the case of resttechnique and Gaussian kernel are as follows:
just a single CV test the lab&@V is used. The labelE stands
before the error obtained on the testing part of data which wa
calculated after the contest, because the class labelsneére
available before.

The first tested method was the KNN. Typically thés set
to 5 at the first trial. The results are

kNN, k=5
XCV: 0.031=+ 0.007 TE: 0.033 So poor results have two reasons: the first is the inadequacy
of Gaussian kernel parametef3 Was set to 1 and Gaussian

In some sense this result can be used as a reference. dispersion to ) and the second is that standardization is not

SVM, G
CV: 1.0+ 0.00 TE:-

Std| SVM, G
CV: 0.217+ 0.018 TE: -




a good idea in this case (as pointed out above). The results of
searching for the optimal Gaussian parameters are presente
in the following section.

In the case of linear kernel for SVM the results were better
but still not so interesting:

SVM, L
XCV: 0.12+ 0.013 TE: -

Another tested method was the normalized RBF (NRBF).
In this case we observe similar behavior as in the case of
SVM—bad influence of inadequate Gaussian basis function
parameters and the effect of superfluous standardization:

NRBF
CV: 0.90+ 0.0008 TE: -

Std | NRBF
CV: 0.095+ 0.012 TE: 0.086

Separability of Split Value (SSV) is a criterion used mainly
for decision tree construction. Although the algorithm i§ig. 3
independent of standardization and often generates cadmpagction.
and accurate trees, it is not succesful in this case:

Meta-parameter search for the bias of SVM’s Gausgmel

SsV The optimum values of are in the area of2(though larger
XCV: 0.14+ 0.018 TE: 0.14 values should also work successfully), so the initial vabfie

] ) 1 was also far from optimal.
We have also applied FSM neural network algorithm to the 1o svmM with new values of its free parameters yields
problem. The adaptive process of FSM adjusts its architecty,, ,ch petter results:

to the complexity of the problem. The results are better than
all other presented so far, except those of the kNN model: ~ SVM, 16, 0.001
XCV: 0.03774+ 0.0075 TE: 0.028

FSM

XCV: 0.043+ 0.043 TE: 0.042 All the interesting results we have obtained with SVM con-

] cerned the Gaussian kernel, so here and in further deseripti
In most cases, the efforts to improve the results presentgd write just SVM (instead of SVM, G).

above were fruitless, however for some methods a metatsearc\ve have also run a meta-search for the dispersion of

for appropriate parameters was successful. normalized Gaussian basis function of NRBF. The results are
presented in figure 5. As in the previous cases a range of

o _ _ owers of 2 was investigated. Finally the value@1l5~ 2644
Finding optimal parameters of SVM can be tricky. Wg, a5 chosen. The optimization decreased the error@a%:
ran several meta-search processes to check a broad range of

values. Figure 3 presents 5-fold CV test results for difietre  NRBF
values of the Gaussian kernel dispersion. The two lines with™ XCV: 0.0284+ 0.0069 TE: 0.0285
points represent the predicted accuracy and accuracy minus
standard deviation (according to the criterion 1) respebti ] )
The Gaussian dispersion in SVM behaves exponentially, so (e S€léction and extraction of features and prototype vecto
tried the rangé—13,0] of powers of 2. It can be seen that the We have tested a number of feature selection methods
highest results are obtained when the value of bias is aroyfighture selection based on correlation coefficient, Fesco
2710 Now it is clear why the initial dispersion of GaussiarBSV criterion [16]) but they were not useful because of the
kernel (01~ 2-332) was so bad. information loss (each feature represents a pixel and dry t
Similarly the values of theC parameter of SVM can be corner-pixels are less important but still not uselesshdipal
examined. This parameter also shows exponential behawvibr £&omponents Analysis (PCA) was not useful either. After PCA
again a range of powers of 2 was checked. In this case the results were not worse, but to obtain similar results as
range was0,10]. Figure 4 presents the dependence betwewithout PCA nearly all PC’s must be used, as it can be seen
the (logarithm of)C and validation accuracy (and stability).in figure 6.

B. Pursuit of optimal parameters




Fig. 6. SVM performance on subsequent collections of PCs.

in this data set, there are no simple sets of prototypes,hwhic
would offer high classification accuracy. The test resutts f

0.99 i 3000 and 5000 of neurons are the following:
0.98 12
0.97 = LVQ 3000
832 /J?-\"ﬂ:t XCV: 0.034+ 0.0083 TE: 0.026
0.94 o q
oo 1 LVQ 5000
0.91 \%\ XCV: 0.0323+ 0.0076 TE: 0.029
0.9
. |
8.22 | D. Committees
o \{\ Successful models combined into committees may improve
0.85 | and stabilize their results. We have tested several types of

committees with different configurations of models.

One of the simplest kinds of committee is based on the idea
Fig. 5. Meta-parameter search for the bias of NRBF's Gaosbiasis of voting (each Co_mmlttee memb.er has a single vote and al.l the
function. votes are equally important). A bit more advanced rule dsfine
aweighted committeavhere in the place of voting scheme we

] ] ) _calculate the probabilities of belonging to the classeshman t
Some prototype selection algorithms were also investijate) 5 sis of the

g
o
N
g
—t

probabilities obtained from submod&ig:(
We have tested the Explore [17], DROP [18], ENN [19] and
LVQ with different numbers of neurons [20]. The error with Wiy L N
Explore was over 10%. The DROP3 was significantly better P (ifx) = N gl p(lx, FJ)' @)
but still not satisfactory: ] ] . -
Herex is an observed vectop(i|x,F;) is the probability that
Drop3 vectorx belongs toi-th class according to submodéjl, and
CV: 0.056+ 0.0059 TE: 0.058

p%(i|x) is the probability thak belongs ta-th class according
to the committee.

A weighted committee of three different prototype selattio
ENN schemes: Explorer, DROP3 and LVQ (with 1000 neurons),
CV: 0.035+ 0.005 TE: 0.0387 gave quite interesting though not the best results:

The results of ENN are slightly below those of kNN:

The prediction of performance of LVQ with different num- g:)/m(;n ggESEipcl)O(;g;gROTFI’;,lé\g%%OOO]
bers of neurons can be seen in figure 7. The conclusion is that - : c
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Fig. 7. Meta-parameter search for the number of neurons i bvethod.

place of the typical 10-fold CV. CV committee (@) SVM
produced just a bit better result:

cve [(}) SVM]
XCV: 0.0175+ 0.0056 TE: 0.0111

The weighted committee af) SVM with NRBF were not
so successful as similar committee with one class agaiest th
rest scheme:

CommwW([}) SVM + NRBF]
CV: 0.0261+ 0.0071 TE: 0.027

A number of committees with local competence (as pro-
posed in [21]) were also tried, but without significant im-
provements. For example the above committee in its local
competence version (where submodels are turned into CV
committees):

CommCompW[CVC[NRBF]+CVC{}) SVM]]
CV: 0.0262+ 0.0069 TE: -

Some feature extraction ideas were tested, but most without
significant results. These include tisand-score(the number
of white regions in a given digit) and vertical and horizdnta
densities.

Another two weighted committees, worth a mention, com-

bine SVM with NRBF and SVM with kNN respectively:

CommW [SVM+NRBF]
XCV: 0.0216+ 0.0067 TE: 0.0174

CommW [SVM+kNN]
XCV: 0.0215+ 0.0057 TE: 0.0206

The weighted committee composed of kNN and NRBF
significantly worse than the previous two:

CommW [KNN+NRBF]
XCV: 0.027+ 0.008 TE: 0.028

E. Darkening

It is easier to come up with new ideas, when we know as
much as possible about the results obtained so far. Although
we found quite accurate models with some methods applied
to raw data, we started looking for some data transformation
to get even better results. The analysis of erroneous tessca
within cross-validation showed that some data vectors asg e
to classify visually, but still they are erroneous casesvds
R consequence of the fact, that these vectors coordinates we
smaller than for most other vectors. In other words the sligit
were brighter than others—sometimes the largest value in a
vector was 9, while the norm is that the most intensive pixels
have the value of 16. We guess that the reason behind the
differences is the method of blurring used by the contest

As it was mentioned above the SVM for multi-class probsrganizers, which was probably different than the one agpli
lems may be used in a voting scheme with SVMs traindady the original authors. As a result digits with the same
on pairs of classes. Each of t ‘% SVM models has one contours but with normal darkness of the pixels are quite
vote for its winner class. The class which collects the highefar from their brighter copies in the sense of most distance
number of votes becomes the final winner of the committé@easures. This brought the idea that it is worth to normalize
voting. This scheme(}) SVM) turned out to be the first our the brightness of the pixels within each vector. It is a sqleci

model to break the error threshold of 2%:

) SvM
XCV: 0.01774+ 0.005 TE: 0.0119

kind of normalization since it concerns vectors instead of
features. We decided to use a linear transformation with a
threshold, which prevents from values greater than 16:

f(x) = 16:max1, L) 3)

To stabilize and sometimes even obtain better performance vie(¥)

a CV committee can be used. CV-committees consist

where x; is theith coordinate of vectox and v, (x) is the

submodels trained the same way as in the CV test, butnimum of 1 and thekth minimum coordinate ok. k is
the models built, compose a committee classifier. The Cthe parameter controlling the transformation, which must b
committees were successfully used by us in [12], [21]. Twithin the range from 1 to the dimensionalityaf-the smaller
escape impasses during classification 11-fold CV was usedkinthe stronger darkening of the image (very smaBhould



force v, to be 1, and the pixels will get either 16 or Odarkening the nearest neighbor is another instance of 9B(460

values). The transformation may be caldarkening because with Euclidean distance 26.9). The second nearest neighbor

it reduces the brightness of some digit images. of the darkened 9 represents class 3 (case 1761 with distance
To find the optimum number df for the darkening trans- 27.3).

formation followed by a classification algorithm we need The brightness normalization improves test accuracies by

to perform some meta-search. For different classifiers Wel%-0.5% for most of the models we have tested. The

obtainedk = 56 andk =59 as the optimum values. differences (although not very large) are confirmed with the
Two examples of exceptionally bright digits are presented paired t-test to be statistically significant.

figure 8. They were selected to show how the 3NN classifier The first example of positive influence of darkening is the

transformation performed witk =56 combined with the®)
N EEE EEE

u n scheme of SVMs:
| ] | ||
. s Dark 56/ ()) SVM
m n XCV: 0.0163+ 0.0063 TE: 0.0103
[ | | ||| |
- | - . As presented above, without darkening the CV error was
EEN 1 [ || 0.0177.
N EEECE | . o
== == Another example of the influence of darkening is its com-
HE_u || bination with the weighted committee of NRBF and SVM:
L [ || ||
u EE Bl Dark 56| CommW [NRBF + SVM]
.' = — XCV: 0.0194+ 0.006 TE: 0.0166
|| || |
= 1 = In this case darkening also decreased the error while pre-
[ | | [ [ | [ serving the standard deviation.
ane s el Another promising value ok for darkening was 59 which
..=E o E: also offered a decrease of the error(§}§ with SVM:
. . . Dark 59| (') SVM
- — — XCV: 0.0159+ 0.0055 TE: 0.0103

Fig. 8. Brightness correction examples. . . - . .
¢ g P To obtain higher stability a CV committee was built on the

s of(N : : .
improves its results thanks to the brightness normalinatid®@Sis 0f(z) SVM. Again the error got a bit smaller:

Bright digits usually seem more similar to other bright tBgi N
than to darker digits representing the same class. The figure )[zgr\lj %9(|)1C5\1/§[(§ 2)(?5:/7'\/'] TE 0.0103
shows bright and darkened (witk = 56) versions of two . : -
Examples (vectors 2576 and 4694), and thglr closest ne'ghi:inally, a weighted committee of two models:(@) SVM
ors._T_he top two rows correspond to the first example, tl&%d a CV committee o@) SVM was composed.
remaining two to the second. In the leftmost column we see
the illustrations of bright and dark versions of the exarsple  park 59| Commw[}) SVM + CVC[(}) SVM]]
The middle column shows the nearest neighbors of the digitS v 0.01499+ 0.006 TE: 0.0095
and the right-hand column the second nearest neighbors. The
neighbors are determined on the basis of Euclidean distanc@lthough we should not expect a significance in the dif-
to the analyzed example. It can be seen, that in the case of féi@nces between (at least) the last three models presented
first example, the bright 5 is closer to a bright 3 (exampl@e last one is the winner of the competition. It misclassifie
1986, distance equal to 18.7) and to a bright O (examplest 12 test instances. The kNN with= 5 misclassifies 42
134, distance: 21.0) than to other examples of digit 5. Aftéfistances. So the best model outperforms the kNN over three
darkening, the case 2576 moves in the feature space towsiges in an absolutely fair test.
other examples of 5, so that the nearest two neighbors also
belong to class 5 (examples 2978 and 2986 with distances
of 27.1 and 32.0). Notice that the distances to another brigh The way to the winner model was not straight or easy. The
digits are significantly smaller than the distance to theesta final solution was a consequence of many different types of
neighbor after darkening. The second example is also rttifiexperiments. It can not be expected that for a real world,
by darkening, however it is not so evident as in the cas®ntrivial data, a single model will solve the problem with
of the former example. It is a bright 9 whose two nearesatisfactory results.
neighbors are bright representatives of class 3 (exam@@8 1 There are so many different adaptive methods and new ones
and 1958 with respective distances of 17.7 and 21.4). Aftare still emerging. Now the most important problem is to be

V. CONCLUSIONS AND FUTURE PLANS



able to find the methods (and their parameters) which provide] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and KKRMurthy,
the best models of given data. Thus, the procedures of model
searching will get more and more important. Nowadays metag)
search is usually performed by a human with some help of
computational intelligence tools, but already now we feel a

strong need for automatization of such processes.

In meta-learning it is very important to observe carefullj17]

the results of tests at each step of the search process. \We nee

to learn how these results point the most promising direstiog;
of further steps. We need to learn more about the ways we

search for attractive solutions and try to convert the kieolgk

into formal procedures. Our experience augmented with t

possibility of performing tests thoroughly and systensdtjc
should bring very successful meta-learning techniques.

e

[20]

We have used some elements of meta-learning in our model
searching procedures. We still work on more abstract, mugh]
more exhaustive and smart meta-learning which can be applie
to different tasks, and hopefully will soon compete with

humans.
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