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Abstract— There are many data mining systems derived from method and its configuration. Using different configuragion
machine learning, neural network, statistics and other fieds. and/or different learning methods, which solve the samesin
Most of them are dedicated to some particular algorithms or of problems, for given dat#, usually leads to solutions of
applications. Unfortunately, their architectures are stil too naive diff t ’I't d oft f ’t tisticallv significanfes
to provide satisfactory background for advanced meta-leaning : e_ren quality and often of statistica _yS|gr_1| |ca|j rence.
problems. Typically only a small subset of solutions is satisfactonda

In order to efficiently perform sophisticated meta-level araly- we need special measures to compare solutions and select op-
sis, we need a very versatile, easily expandable system (irany  timal or suboptimal ones. From the other hand, in compliance
independent aspects), which uniformly deals with differebkinds with the conclusion ofno free lunch theoremwe can not

of models and models with very complex structures of models t that inal thod b timal f dat
(not only committees but also much more hierarchic models). expect that a single method may be optimal for every data

Meta-level techniques must provide mechanisms facilitatig op- S€t. This means that to reliably solve problems, we can not
timization of computation time and memory consumption. restrict our search to application ofsingle method

This article presents requirements and their motivations 6ér The nature of a problem represented by d&taloes not
an advanced data mining system, efficient not only in model haaq to pe very hard. It happens that a simple method may
construction for given data, but also in meta-learning. Sore .
particular solutions to significant problems are presented The solve a proplem very We"'_nevertheless We_have_to discover
newly proposed advanced meta-learning architecture has em What the “simple method” is and what configuration of that
implemented in our new data analysis system. method is appropriate.

The problem is that thousands of articles were devoted
. INTRODUCTION to learning methods in computational intelligence andrthei

Learning from datas getting more and more important asnodifications, while there is no simple answer to the quastio
a way of knowledge discovery for many real world problemsyhich method, how configured and why, we should use to
Today nearly everything is (or may be) represented in gdlve a given task. The knowledge presented in these papers
digital format, hence may be analyzed using computationfdes not help us much, when we are faced with a new
intelligence methods. Given a problem represented by a dat@blem (a new data set). Nontriviality of model selectisn i
setZ we look for amodelwhich seems to be a good solutiorevident when browsing the results of NIPS 2003 Challenge
to the problem. Such model can be seen as a function in Feature Selection [7], [8] or WCCI Performance Predittio

fy 2 ) Challenge [9] in 2006. These competitions show that in real

applications, optimal solutions must be composed as comple

transforming the domair2™ into some target spac&. The models obtained in atypical ways. This is even more impoértan
goal of finding attractive models may be achieved by adaghen solving more difficult problems in text mining or bioin-
tation of some free parameters (denoted MYy. The task formatics. Then, only when a good cooperation of submodels
may be defined in a number of different ways. Typical tasks a complex one are obtained, we may hope for a reasonable
belong to groups like classification, approximation, auisty, solution. This means that for example before classificatien
rule extraction, finding associations etc. For an introiucto  have to prepare some transformation(-s) (and/or ensejnbles
learning algorithms see [1], [2], [3], [4], [5], [6]. which play crucial role in further classification.

A learning methods a process of adaptation of free param- Some meta-learning approaches [10], [11], [12], [13] base
eters. It can be controlled by a group of parameters calied ihainly on data characterization techniques (charadesist
configurationand as a result gives a “final” model (regardlesdata like number of features/vectors/classes, featureis va
of whether the learning was supervised or not). However thaces, information measures on features, also from dacisio
model is “final” only from the point of view of given learningtrees etc.) or onandmarking (methods are ranked on the



basis of simple methods performances before starting the tools for estimation of modetlevance(according to the
more power consuming ones). Although the projects areyreall  goal, it may be accuracy, MSE, MAP or one of many
interesting, they still may be done in different ways or aiske other measures [1], [2], [3], [16]) together with an anal-
may be extended in some aspects. The whole space of possible ysis of reliability, complexity and statistical significae
and interesting models is not browsed so thoroughly by the of differences [17] to other, already found, solutions,
mentioned projects, thereby some types of solutions can noté tools for fast and easy on-line definition of some small
be found with them. extensions of the system like new metrics, new feature
In our approach the terrmeta-learningencompasses the ranking algorithms etc.,
whole complex process of model construction including ad-« model templates for configuration of complex model
justment of training parameters for different parts of the structures with exchangeable parts, instantiated during
model hierarchy, construction of hierarchies, combining-m meta-learning,
cellaneous data transformation methods and differenttadap « versatile time and memory management to guarantee
models, performing model validation and complexity anialys optimal usage of the resources (especially when dealing

etc. with very complex model hierarchies), also when run
Currently such tasks are performed by humans. Our long- on a computer cluster; this includes model cache sys-
range goal is to eliminate human interactivity in the preess tems and unification framework preventing from repeated

and obtain meta-learning algorithms which will outperform  calculations, which are very probable in massive meta-
human-constructed models. Here we present the framework level calculations (‘probable’ not because of chaotic meta
facilitating dealing with complex models in a simple and search but same models can be used as parts of others
efficient manner. Section 1l explains why currently avaiab more complex systems),
systems are not eligible for such advanced meta-learnsigta « simple and highly versatile Software Development Kit
and section Ill presents different aspects of our new system  (SDK) for programming system extensions; SDK users
should define just the essential parts of their methods
Il. WHY THE NEW ARCHITECTURE FOR METALEARNING with as little code as possible and with no system-specific
IS INDISPENSABLE overhead.

All the ideas mentioned above confirm a strong need for

Data mining software systems available today do not pro- . .
9 Y y b new system designed for advanced meta-learning app®ache

vide satisfactory tools for meta-level model manipulaIior‘i"I ) o S
Software packages like free Weka, Yale, commercial SP |gh must be very efficient arjd versatile in several ways and
Clementine, Ghostminer etc.—see [14], [15] for a compr@- different _Ievels of abstraction. The next section p_rtssen
hensive list—are designed to prepare and validate diﬁerﬁ me very |mportanfc features of the new system which can
computational intelligence models, but they lack most ake down the barriers of current systems.

the features listed below, which are substantial for effec-
tive meta-learning. Thereby these systems may be used like
calculators in computational intelligence rather thantesys
which discover models in really automated and autonomousy) Versatility: In the case of a data mining system, versatil-

way. Advanced systems for complex model construction aif means that many different kinds of data sets can be easily
analysis must provide: analyzed with many different kinds of tools. We would like to

« a unified view of most aspects of handling CI modelginalyze “tabular” data, text data, bioinformatic sequence
(including complex model structures) like model conmicroarrays, etc. Each data set needs miscellaneousdransf
struction and a general input—output representation farations before the final knowledge extraction methods can be
information exchange between models, which facilitategpplied. The transformations include standardizatioafuie
common manner of models manipulation without muckelection and aggregation, Principal Components Analysis
information about the nature of each particular mod#hultidimensional scaling and many others. Knowledge may
(e.g. a unified way of dealing with simple and compleke extracted from data with different techniques derivednfr
submodels must be provided at the level of the systestatistics, machine learning, neural networks, etc. ard- so
engine), ing different optimization problems (classification, regsion,

« easy and uniform access to model parameters; each matlgstering, etc.).
must be assisted by its configuration class with a standard??) System components unificatiolm practice it is impos-
way to adjust its fields and a possibility to describe theible to extend the engine of the framework each time we
characteristic of the fields (linear, exponential, et t want to support a new type of data or model. Therefore we
scopes of sensible values, etc., need an abstract definition of a model, underlying the wariet

« easy and uniform access to exhaustive browsing of resutfsentities mentioned above. Before a successful data sisaly
of training; a repository of model results, providing unisystem is built a thorough analysis is necessary, aiming at
form access to this information, independent of particulamnifying the background of miscellaneous data and algmsth
models, representations.

IIl. V ERSATILE AND EFFICIENT DATA MINING
FRAMEWORK



Such unification is necessary not only as a programming6) User interface:The ease of navigation within the system
technique justified by software engineering, but as a meean be obtained only if the parameters of the algorithms
leading to broad functionality of the engine, facilitatimg in an intuitive way. Boxes with clearly marked inputs and
formation interchange between entities of different lsvel outputs, arrows displaying the flow of information and caite
abstraction and providing techniques for reduction of mgmodependent way of setting parameters seem to be very adequate
and computational time consumption. Additional advantfge here.
the unified view is the possibility of exploration of the spaf  7) Other ideas:There are plenty of other problems, which
models without deep knowledge about the particular elesnemtust be solved to get a fully-functional framework, like
of the system, which is crucial in advanced meta-learning. running under different operating systems, parallel datans

3) Common input-output schem@ne of the most sig- on a group of computers with possibly different hardware
nificant aspects of the unification is a general input-outpparameters and even operating systems, etc. In this anle
scheme. It is extremely important, that all the componefts @o not describe them, because we concentrate here on the
the framework use the same general language to describedbgects of information exchange between the components and
necessary inputs and available outputs. It allows to coebithe methods of saving time and memory.
the components at the user interaction level and releasés th
authors from foreseeing all their possible applicationse T o Methods and models
combinations reveal the same input—output facilities aglsi
components, so they may be managed the same way as simpl8 computational intelligence, the termethod(or learning
models. method is used to describ@daptive algorithmsA model

Thanks to the rapid growth of computing power, today’§an be defined as the final result of application of a method.
personal computers are fast enough to perform quite compl8xPractice, the term model, often means a representation
calculations in minutes. As a result of that, most of the da®f some fully-functional model performing approximation,
sets, being currently used for model testing in numerous-cofiassification or other tasks (e.g. a neural network, a decis
putational intelligence articles, can be analyzed by rlgiti tree, a k Nearest Neighbors model, etc.).
tests and take advantage of statistical measures of sigmific It is very popular to split knowledge acquisition process
of the differences between different methods results. Bespnto stages (including data preprocessing and final model
that, numerous publications miss such thorough analystseof construction). So popular, that most data mining systeriema
results. A general data analysis framework must provideesoffear distinction between these stages. We observe that it
standard methods for statistical significance testing,rameal Often leads to a misuse of learning strategies (for example a
open infrastructure for further extensions. In combinatioth supervised discretization is performed as a data prepsinzgs
the unified input—output scheme it facilitates effortlestiable and then method capabilities are evaluated with a cross-
testing and comparison of complex model structures. validation performed on the discretized data).

4) Results repository:Each component of a data mining We propose a unified view of model without the distinction
project should present its most interesting gains to theesys of data preprocessing and proper model building, because in
so that the interactive user or other models can take adyantfact, the border between data transformations and final mode
of them. It becomes especially important when meta-legrniis vague and gets completely ambiguous when we exploit
algorithms are constructed, so it is worth to introduce @eta-learning techniques. In our approach the term model
special repository for this kind of information. A uniformencompasses a broader range of components, because from
results repository makes analysis of model results modéte point of view of a general data analysis framework there i
independent and facilitates very deep meta-level analyisis no reason to differentiate between the algorithms for logdi
simple means. We can not rely on the data contained witHire data, visualizing some aspects of data or other models,
the models, because sometimes it is worth to keep the resit@sting classifiers or approximators, etc. For example asero
available even when the model itself is no longer needed, fédlidation test can be treated as a model, because it also
example in multiple tests like cross-validation, the vatet performs some calculations to gather some information—in
models must usually be released to save memory, but keepihig case the information about series of results obtainéu w
the most important results allows for additional non-tgbic Some adaptive processes. The output it generates can also be
analysis after the whole calculations are finished. an input for other models: for example some algorithms con-

5) Software Development Kit (SDKBuccessful data anal-trolling statistical significance of differences betwesifiedent
ysis framework must be assisted by easy to use tools supethods results.
porting the development of third-party components. The ex-1) Models abstractionin our approach, anodelis a result
ternal developers should not be obliged to learn much of application of an algorithm with some particular paraenst
the system internals. Defining the necessary stuff like rhode particular input data. It is an information carrier—this
configuration, its inputs, outputs and the results to be keptinformation may be passed to other models by means of
the repository must be as simple as possible, and obviousipdel outputs (see figure 1). Such abstract idea of model
clear examples, which can also serve as start points, mustfite different algorithms corresponding to different lesedf
provided. abstraction. In other words, the general definition encases



Model Inputs: Outputs:
configuration e training data \ o decision tree classifier

Decision tree
Parameters: / LT \ Results (in repository):

PR process
e split criterion o number of tree nodes
Inputs Model Outputs e stop criterion e traning data reclassification
———eo o——>o e others accuracy
——re i o—>e
s (simple or complex) 3] . o others

Fig. 2. Decision tree model structure
Fig. 1. Abstract view of a model.

specify how the adaptive process of the model will operate on

not only components mentioned above (classifiers, data lod¥PUtS 10 generate outputs and results.

ers, visualization techniques, tests like cross-valigtetc.), ~ 3) OUtpUts vs resultsThe distinction between outputs and
but also any part of a complex algorithm. For example we c&RSults is subtler and concerns the way they can be used by
split the SVM methodology into several stages: separate tyg€rnal models. Both are the effects of the adaptive peoses
kernels calculations from quadratic programming taskslatc € model, but the results are deposited in a special repgsit

this way we obtain a submodel of SVM, which calculates thahich makes them available even after the model itself is
kernels—it is a proper model in the sense of our approadfi€ased. From the other side, outputs nature is to prowote n
because it precisely defines the input data, kernels paeametonly static information about the results, but_ _alsc_) metho_ds
and yields outputs in the form of a table of kernel valued? Perform the task of the model (e.g. classification), while
Such solution is very attractive from the point of view of€SUltS repository is rather predestined to contain objedth

the efficiency of calculations. If we start another adaptivePrt Of static information. Although the methods of the fesu
process of the SVM, which does not differ from the firspPiects may also prowde ext_ended_functlonahty, it is not
one with respect to the kernels, then the kernel part may feommended to mix the solutions this way. ,
shared between the two SVM models and this way we obtain?) Model structure exampleAn example of the scenario
significant savings in both memory and computational pow®fth inputs, parameters, outputs and results is shown in

consumption. The unification of the kernel submodel can [§@ure 2. It shows a decision tree model with single input of

performed automatically by appropriate design of the I[mojetraining data and some parameters of the adaptive prockss. T

management part of the system engine provided that thesinpﬁ‘c‘)del exhibits classification routine as its output and d@po

and parameters of models are also uniform, so can be handi@f'® humbers in the results repository. We can use the output
in the same manner on a high level of abstraction. to classify other data sets. This operation makes sense only

Also when we use the same data transformation techni Vﬁ/g"e the deC|S|on_ tr_ee model is fully_ available. _When the
: . X . model is tested within a cross-validation, where in order to
as a preprocessing stage for two different learning mashine . :
. . . sgve memory we do not keep in memory all the models built
there is no reason to perform the transformation twice ari1n each fold, the classification routines of the releasedeatsod
occupy twice as much memory. If the data transformation iSre not ava'ilable however it is still possible to analyze th
implemented as a separate model, then the model managenqent ' b y

routines will notice the unification possibility and will @she results in the repo_snory_, for example to check th_e numbers
. . of tree nodes obtained in each fold, calculate their avex;age
same transformation model for both algorithms.

_ standard deviations, etc.
Another spectacular example of memory and power savings

are the families of feature selection and vector selectidh Information exchange and complex model structures
methods. We do not need to copy data, when we select a subsgthe information exchange between models is a crucial
of features or vectors. Thanks to submodels extraction we M@ature of an effective system. Indeed almost everythirtg da
obtain the same submodel representing the whole data setfgalysis systems do, is an information exchange or preparat
each of the models, and the subsets may be defined by setg&fause of information exchange. Separate models are not
indices which usually occupy significantly less memory thaggtisfactory even in the simplest cases. For example, when
the corresponding data subset. Although the access to Spdhning a cross-validation we need some submodels to learn
selected features or vectors must be a bit more expensiiie tad some others to perform the tests. There are many reasons,
in the case of copied data, proper definition of the enumesatgor which the possibility of building complex structures of
makes the difference not too large, and savings which resgfbdels is obligatory for contemporary data analysis tools.
from not copying the data will usually compensate the loss. 1) Modular structure:Any model may contain a number of

2) Inputs vs parameter®ne of the ideas mentioned abovesubmodels of any type and any level of abstraction. Alsoa sin
that require some additional comment is the distinction bgle model may have submodels of different types (for example
tween inputs and parameters. Formally the function of impuew feature selection models and few vectors selection teode
is to provide means for exploiting outputs of other modelplus one simple committee). The submodels can be seen as
while parameters do not interfere with external models balavesof the parent model. The submodel does not need to be



of a simple type—it may also be a more or less complex modabard is allowed to generate a number of input collections,
(e.g. ensemble of complex models, meta-learning, testimdpich are provided to other models by a number of instances
model, etc.). Such solution is important in many cases: somka special model called distributor. Each distribution board
typical applications are testing models (repeaters, meerte, defines what distributors may be used with it, so that the
cross-validation), ensembles, meta-level methods aner&ith repeater can do its job without compatibility clashes. Tlag,w
The submodels can be called and used up to the needs ofahepeater operates is the following:
parent model—the parent model may for example create 100Q a defined number of times it produces an instance of the
models and after that choose three of them and destroy the res distribution board (according to its configuration),
The important view of submodels cover also the unification « for each distribution board it generates a number of
level for nontrivial models as it was already presented in distributors (according to the information supplied by the
the previous subsection by the example of the SVM model board output,
which may contain a submodel devoted to the management for each distributor, it constructs a hierarchy of models
of the kernels. Because of such definition, models become defined by a scheme box with inputs collection compat-
clearer and much more effective. Such model splits should ible with the distributor.
be performed wherever the adaptive process consists of samehe case of repeated CV test, we define @\ repeater
naturally separable parts. as a repeater with distribution board fixed@ distribution

2) Input-output interfacesModels may be connected us-hoard, which appropriately generates a given number of pairs
ing input and output interfaces which play the role of plugd a of train-test datasets. Each pair of datasets is exhibited b
sockets. And as in the world of plugs and sockets they mugitributor, and is used to perform a single CV fold.
be compatible (in types and features). The connectionshare t At the configuration stage the CV model may look like
way of information exchange between models. Output typéise one in figure 4. The dotted lines connecting the CV
define exact possibilities of the outputs. It may happen éhaRepeater with the CV Distr Board and the scenario scheme
single model will have a few different outputs and/or willete box, show the parent—child relation between the models. The
a few inputs. Thanks to the inputs and outputs differentdypeV distribution board has a single input defining the dataset
of models may be connected to interact (for example clusgeriwithin which the CV is to be performed and a single output
model with data loader, classifier with transformer, test#h  providing information about the distribution board (hownga
approximator and data, etc.). Figure 3 presents an examplitributors are needed and how to create their outputs). Th
Dependently on the type of connections, the first model m@yoper scenario, which is to be repeated, is defined as a
understand the second one deeper or shallower (accordingd¢heme-box. In this case it uses two inputs (corresponding t
the needs which always are declared in the specification tht training and test datasets respectively) and allowsiske
inputs). to define its interior i.e. to put there required models amdibi

3) Scheme boxesAnother concept is derived from thetheir inputs and outputs. A complex structure of models aan b
nature of flow diagrams. It arose from planning maximum vegenerated (including data transformations, classifiers.&the
satility and optimal usage of computational powerséheme example shown in the figure will train two classifiers (kNN
boxis a specialized type of model to deliver possibilities afins SVM) in parallel and test each of them in each fold of the
enclosing a variety of models and their connections usir@y,
DAG's (directed acyclic graphs) at the same level of model At runtime the CV model acts as standard repeater model
dependencies. Each pair of models in the scheme box @lescribed above). So, it creates given number of CV distri-
regarded to be in sibling relation (in contrary to the subetodbution boards, a number of distributors (equal to the produc
concept described above, where models are in a parent—cbildhe number of repetitions and the number of CV folds) and
relation). A scheme box may be equipped with inputs arfdr each distributor, instantiates the scenario definediwit
outputs like any other model. Because of that, the scheni@ scheme box. Full view of twice repeated 2-fold CV of the
may also play the role of a submodel while representingenario defined in figure 4 is presented in figure 5. Again, the
some complex behavior. Scheme inputs may be connectiited lines show the parent—child relation between the CV
with appropriate model inputs inside the scheme and the saRepeater and all of its submodels. Obviously the CV repeater
concerns the outputs. The combination of the two conceptsmbdel may also control the results obtained with all of the
scheme box and submodels allows to build models of agjildren, calculate statistics etc.
complexity with high efficiency (graphs of graph’s). There are no limits on the types of models that may occur

A good example of how to use the scheme boxes is a moagthin a scheme box. We can place there different transform-
performing cross-validation of classifiers. In our systénis ers, classifiers, approximators, ensembles, testersniwpls,
a specialization of a general model callegheater which is data loaders, etc.
responsible for multiple running of (possibly complex) sae Another advantage of scheme boxes is that they can be used
ios. The repeater model is based on the concegistfibution to define templates at model configuration phase (a tempiate o
boards and distributors This means that each repeater uses classifier or other type of model—remember that a scheme
an externaldistribution board modeto generate inputs for with a classifier output may play the same role as other
subsequent runs of the repeated procedure. A distributidassifiers while having possibility to consist of more thoane
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Fig. 5. CV Repeater of figure 4 at runtime.

model). It is especially useful in meta-learning (see sectil- which are real objects of concrete types. The type indicates
C.4 and figure 6). level of abstraction, for example consider two outp@¥M-

4) Information exchange using inputs, outputs and resukassifierand classifier The classifier output can be seen as
repository: There is a natural correspondence between inpdy classifier so it gives access to some general classificati
and output interfaces. They are responsible for infornmatiéoutines, however in the lifetime it is a concrete classifier
exchange both in the time of learning and in the further lifdpossibly SVM) but it is of no interest when used for example
time of a model. The connections are determined within mod® an ensemble of classifiers or cross-validation. For some
configuration (by the interactive user or enforced by parefther models it may be very important to read information
models). Models connected to others may open appropri#tgich is accessible only fron8VM-classifieroutput (such
inputs and read information from them. The structure of tHuUtput may express additional information related to SVM
information depends only on the functionality of the inpyge  models). It may be the case when a model has specialized
or more precisely on the source model output type propertigghmodels for given purposes. A model may read information



from parent or sibling models via input—output connectighs the project may be kept in the cache for some time, and
parent model may read from its child models through knowpossibly be reused in the future. Different types of cachg ma
child’s outputs. Model outputs are also used by visualirati be implemented. The simplest one keeps models in memory
and reporting tools. during a single session (obviously with additional corofit
Interesting information may be found also in the resul@etermining when to finally release the model). Another each
repository. The main goal of this repository is to provide emodule may keep the models in a database stored on a disk,
common way for commenting on models which is especiallyhich allows for models reuse among sessions. Yet another
useful for testers. There is no obligation for the models ®wache system could be designed as a network server and
use the results repository. It is rather an opportunity #spnt provide mechanisms for sharing models by many users of the
interesting information. Results repository collectoimfiation system. This would allow for reliable comparison of results
from every model in the project. In fact the repository isbtained with different models for popular data sets withou
distributed according to the structure of the project anchit the need for recalculating results of all the models usetién t
be read and analyzed in different ways by a special quesgmparison.
system. The answers are special objects (with special butpu
types) available as any other outputs, so they may be arhlyze3) Complex navigation with no consequences for SDK
by other models (typically by testers, statistical sigmifice users: It is very important to design the project management
analysis methods and especially by meta-learning methodapdule in a manner which does not burden SDK users with the
Results analyzed for example by one of meta-learning modgicessity of deep familiarity with the engine mechanisnes. T
may be again a source of information for another level ®eep new model development as simple as possible, the cycle
abstraction (may be after some pruning if necessary). of model life must be very simple: each model is configured

There are other levels of unifications in our system whic:fr'1rSt and then its adaptive process is started. When theifgarn

correspond to visualizers, reporting methods, data |gadird 'S finished th‘? model is fixgd and will not change in the
: : T ' future—there is no need to implement the ways of reaction
exporting or working with different types of dat_a. _We can notto the changes in other models. This is the point of view of a
present them all here, because of the space limit. programmer developing models. From the point of view of a
user, each model may be reconfigured and trained many times,
but in fact, each time a new model is constructed or reused.
1) Project manager:Full advantage of the models abstracTpys, it is very important to sensibly split complex models

tion described in section Ill-A.1 can be taken only with apnto a set of smaller ones, because this will make submodels
propriate model management. Models are defined and traing@lse more frequent.

within the graph of models, which can be called a project.
Providing efficient mechanisms for adding new nodes to the Appropriate design of the SDK and basic models available
graph, defining input—output connections, etc. are thestagk in the system can “enforce” proper models construction by
a project manager. SDK users. For example, in our system, the methods of feature

In order to efficiently configure models, bind their inputs tselection based on rankings of features are defined in such a
compatible outputs, etc. project manager should be eqgdippeay, that the ranking is an output of a submodel. Adding new
with repositories of model types, their inputs, outputs, et ranking based selection to the system consists in creaistg j

2) Models reuse: Supporting models configuration andthe ranking submodel.
navigation within the project is an important part of a data
analysis system, however the most important part of theeptoj 4) Template model structure&specially for the purpose of
manager seems to be the module for model managemenéta-learning, model schemes may contain abstract boxes—
which in particular is responsible for models unificatiordanplaceholders which are filled with a concrete model or scheme
multiple use of the same component. The repository of all thietermined in the meta-search process. Figure 6 presents an
models in the project augmented by configuration compariserample of a meta-learning model configuration with such
routines can do the job. It is easy to verify whether the ispufi template. The meta-learning here will search for a trans-
of two models are the same. If apart from that each modekmation (different transformations, which in particulmay
configuration provides a method to compare two configuratitw®@ complex structures of transformations, will be tried in
objects, it is easy to recognize when a model can be reusedplace of the “Trans. template”) maximizing some measure
conjunction with the model abstraction ideas, which suggesf quality of the collection of classifiers (the scheme otitpu
splitting complex models to several more specialized on@&sa multi-output i.e. a collection of classifiers—in thissea
(extracting kernels from SVM, building appropriate models a collection of three classifiers: “Classifier 1", “Classifie
data tables, etc.), the model manager will facilitate reofse 2", and “Decision module” which combines decisions of the
models parts, and therefore will reduce the time and memduur classifiers). Please notice that transformationsti3rd”
consumption. and the template are shared in a very natural way, saving

The model reuse may be much broader, when we suppglgmputational time and memory (in meta-learning takinge car
the system with model cache. The models released frarhas small complexity as possible is especially important)

C. Models manipulation
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|_,!. Classifier 1,
Meta o Trans. 2:1_,1. Classifier 93!
learning 8| —
° g . » Classifier 3
Trans. . « Classifier 4, Decision
Scheme input(e—t® template, o Module |
training & testle L>e
Scheme output
classifiers
Fig. 6. An example of meta-learning model with transformattemplate.
IV. SUMMARY [4] T. Hastie, R. Tibshirani, and J. Friedmafihe Elements of Statistical

. Learning: Data Mining, Inference, and Predictipger. Springer Series
The system, we present the part of here, is very general but in statistics. Springer, 2001.

still highly effective. Thanks to its modular structure hiotg  [5] B. D. Ripley, Pattern Recognition and Neural NetworksCambridge:
must be reimplemented or recalculated. The possibilities Cambridge University Press, 1996.
T . o _%] B. Scholkopf and A. Smola,.earning with Kernels Cambridge, MA:
building models of any complexity facilitates any composi- = mIT Press, 2002.
tions of known methods (and methods that will be availablé?] I. Guyon, “Nips 2003 workshop on feature extraction,tWwww.-
in the future too) clopinet.com/isabelle/Projects/NIPS2003/, Dec. 2003.
’ . . [8] I. Guyon, S. Gunn, M. Nikravesh, and L. ZaddReature extraction,
Thanks to general and flexible engine, new models (also™ foundations and applications Springer, 2006.
the complex ones) can be implemented effectively with th¢®] - Guyon(,i el “P_e:(forrr?anﬁ;e ul 2rg)roegiction challenge,’
ttp://iww.modelselect.inf.ethz.ch/, July .
SD}_(' Moreover, by me_e_ms of SDK _any type of models Ca[qO] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier, tddearning
be implemented (classifiers, approximators, testers, mmesis by landmarking various learning algorithms,” Rroceedings of the
and even models of completely new types already unknown). Seventeenth International Conference on Machine Learniidorgan

. . . . Kaufmann, June 2000, pp. 743-750.
Models in the project are connected using input and outp[ﬂ] P. Brazdil, C. Soares, and J. P. da Costa, “Ranking ilegralgorithms:

interfaces in a natural way giving the opportunity to effithg Using IBL and meta-learning on accuracy and time resulgthine
exchange information, and the results repository collsatee . heaénmg vol. 58 n(g. 3,dpr(3:- 251—277& Zgoi- Kennedy, “ahbi-ord
e : . bensusan, . Iraua-Carrier, an . J. Kenneday, y r-order
addlt"_)nal data (comments) about the models. The prOJe;z_t Mé approach to meta-learning,” iRroceedings of the Work-in-Progress
contain any number of data sources, any number of simple Track at the 10th International Conference on Inductive itog
or complex models of any kinds, which can cooperate or Zroglr%rrmir}gl Cussens aréd /A- Frlislcl?, Eds., 2000, pg- 3§4|2- [Online].
H H H wvailable: citeseer.ist.psu.edu/article ensusarg)ﬁilor er.nhtm
.CoeX'StS.m Seve'_'al ways. Such models may easily _e?(ChaTEﬁ Y.H., Peng, P. Falch, C. Soares, and P. Brazdil, “Imptbwataset
information on different levels of abstraction. The veilggt characterisation for meta-learning,” The 5th International Conference
of the system predestines it to a broad range of applications on Discovery Science Luebeck, Germany: Springer-Verlag, Jan. 2002,
. . i . _ pp. 141-152.
mcluz_jlng the most soph|st_|cated ones like advanced_me[ﬁ] W, Duch, “Software and datasets”
learning approaches. The riches of different models anid the  hitp:/mww.phys.uni.torun.pl~duch/software.html, (B0
types opens the gates to powerful exploration and explamati15] KDnuggets, “Software suites for Data Mining and Knodge Discov-

P ery,” http://www.kdnuggets.com/software/suites.html.
of data and can not be compared to any already existifg, T.yMitch%n, Machine Eegaming MCGraw Hil, 1997

system. [17] R. Lowry, “Concepts and applications of inferential atstics,”
http://f_acuIty.vassar.edu/lowry/webtext.html, Vass@ollege, Pough-
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