Meta-learning as scheme-based search with complexity control
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Abstract—Recent years have revealed growing need for features of decision trees built for the data [6], etc. In som
efficient meta-learning. For a much longer time it has been other approaches instead of measuring similarity between

known that there is no single adaptive algorithm, eligible — yai556ts decision trees were used to decide which algorith
to provide satisfactory (i.e. close to optimal) solutions dr ’
should perform better [7].

every kind of problem, however computing power facilitates
practical applications of more and more sophisticated leaning Another meaning was given to meta-learning in numerous
strategies and more and more thorough search in the space articles devoted to ensemble methods, since building cexnpl
of candidate models. Because testing all possible modelsnist  stryctured models can also be seen as a meta-level task.
(and will never be) feasible, we need intelligent tools to eobine The complex models include different kinds of committees
human expert knowledge, the knowledge extracted by means .
of computational intelligence and different search stratgies (@ISO the ones considering member-model competence when
to disclose the nature of a problem and provide attractive Mmaking decisions [8], [9]), stacking models etc. [10], [11]
models. We present some techniques, we have successfullgdis [12]
in our meta-learning approaches, describe the crucial ides of All the above-mentioned methods build complex models or
our geln eral architecture for meta-learning, and show partal prepare model rankings to act as method selection advisers,
exampies. which is not satisfactory for us. We understand meta-learni
|. INTRODUCTION as automation of the process of finding most accurate models
for given task (which eventually should replace human inter
The need for successful meta-learning is growing. FOgction). It is not enough to compare the datasets to provide a
tunately, at the same time, advanced learning is gettingjiaple advise on which method can be more useful to solve
more and more feasible. For now, searching for as accurais problem, especially because different methods usually
models as possible, has been staying within the domain gfguire different data preprocessing to obtain optimalltes
human intelligence, but we are never as precise, thoroughg data transformations may move datasets into completely
and systematic as computers can be, so there is no reag@ferent point in the space of datasets. Thus we emphasize
why machines could not perform such tasks better than ughe need for an intelligent search for the (sub)optimal solu
The progress of computational capabilities, already nowon which can not be based only on some statistical informa-
facilitates successful artificial approaches to metarie@: tion about the form of the data, but must integrate metatleve
Obviously, searching for optimal models is NP-hard, sgnformation of different kinds and sources, including huma

the progress in computing hardware does not facilitate épert knowledge and the knowledge gained by means of
complete search through the space of possible models, gmputational intelligence (CI).

we need (and will always need) intelligent systems for this
purpose.

There may be many different views of meta-learning and
many different algorithms putting stress on different ape  From our point of view, meta-learning is the process
of the field. Till now, the term “meta-learning” has beenof learning how to learn, to obtain as good solution to
used in several meanings. For example, some articles se thiven problem as possible. It corresponds exactly to what
name when talking about building rankings of methods ohumans are trying to do when mining given data: in order
the basis of their predicted eligibility for solving padiar to find very good models we try many different methods,
tasks [1], [2]. The rankings were constructed according ttheir combinations etc., observe and analyze the subsequen
some similarity of the problem being solved to other knowmesults and use our general knowledge about building CI
problems. The similarity was measured as a distance in theodels, to control the search in such a way that only the
space of datasets, where each dataset was described bgeasible combinations are tested and those maximizing our
number of quantities corresponding to the types of valuesispicions about being attractive. So meta-learning isra ve
contained within the data, some statistical coefficien{s [3complex process incorporating the search for (sub)optimal
results obtained with some simple learning algorithms [4kolutions, using meta-knowledge to conduct the search and
[5] (this technique was given a namelahdmarking, some (simultaneously) gaining new meta-knowledge.

II. GOALS OF META-LEARNING



Meta-learning aims at finding models which optimizesignificantly outperformed all the other classifiers, hogrev
some criteria. It is not restricted to maximizing classiiica it was not the final result—after some data transformations
accuracy, minimizing regression error or any limited set ofve obtained significantly better results (one of them won the
tasks. It is important to have the possibility of providingcontest) and other classifiers performed better than 5NN.
the criterion without the need of any changes within the Our data mining experience (like the one with the OCR
engine of the data mining system. Fortunately it is not vergompetition) shows, that proper data transformation is the
difficult in search-based approaches. Our system providegicial point of a successful model. Even when dealing
such openness and has already been used to reach diffesgith classification problems, it is almost never possible to
goals. Here we discuss only classification tasks, but twget optimum results with a classification algorithm alone.
measures of model attractiveness: classical accuracy amidreover, finding appropriate data transformation is often
balanced accuracy. much more difficult than finding optimal configuration of a

In classification problems, the goal is usually to maximizelassification algorithm, because there are plenty of foains
the classification accuracy (or balanced accuracy), but itaations that may be performed, and they may be combined
estimation can never be devoid of error. Thus we are oftén many different ways, so that it is easy to be entrapped in
interested in high stability of our validation results (itke a combinatorial explosion. It is important not only to avoid
minimization of their variance). To achieve this, we prefesenseless combinations, but also to drive the search insb mo

maximization of attractive directions.

©— ao, (1) The basic transformations we use are:
wherey is an estimation of the expected value of accuracy, * different kinds of normalizations (rescaling o, 1] or
is the standard deviation of the accuracy within the vaiiat [-1,1] interval, standardization, the same methods with

tests, anda is a parameter (usually equal to 1 in our  respect to the data without outliers etc.) _ .
approaches). Such measure is sound with the ideas of testing feature selection methods (based on correlation coeffi-
statistical hypotheses and its optimization may be seeheast ~ cient, F-rank, SSV criterion and some measures derived

maximization of the threshold, below which we will not fall ~ from information theory and also some ensemble meth-
with given probability (equal to 0.5 in the case aef= 0, ods), _

and greater for larger values of assuming that the mean e+ Numerous vector selection methods [14], _

is equal to the median). « discretization and its reverse (converting continuous

features to symbolic),
[Il. THE META-SPACE « Principal Components Analysis (PCA), usually accom-
By now, our meta-learning approaches have been applied panied by selection of several PCs.
only to classification problems. In such cases, the solution gyen in the case of standardization we have many possi-

space contains different classification models (simple @jjjities. Apart from eliminating outliers, we may consider
complex) built by machines trained on the data obtained Wither-feature standardization (the classical approach, where

a number of different transformations. each feature is standardized independently) peddataset
~ The set of classification algorithms, we usually examingtandardization, which results in mean 0 and variance 1
includes: within the values of all features together—it makes more
« k Nearest Neighbors, sense for instance in the case of text analysis data, where
« Naive Bayesian Classifier, word occurrences are counted and thus it is advantageous to
« Support Vectors Machines (with Gaussian or lineakeep the proportion between counts for different words. The
kernel), per-dataset standardization was crucial in our partimpat
o SSV decision tree, in the NIPS 2003 Feature Selection Challenge, where one of
« Feature Space Mapping neural network. the datasets was devoted to text classification (as it turned

The list is consistent with our assumption that methodeut after contest adjudication).
of different nature should be tested—it contains stafistic Another version of normalization was helpful in our
methods, neural networks, decision trees and SVM (whic@CR data analysis. Our models erroneously classified some
with linear kernel, is a linear discriminant method). vectors representing numbers with very easy to understand
For each model we need to search through the space sffape, but with lower pixel intensity than in the case of
possible values of the parameters. For example: in kNNther numbers. We called the transformatidarkening
model we can search for optimal number of neighborsut in fact it can be seen as @er-vector normalization,
to analyze, in SVM we can determine the best values afhich may be useful also in other tasks (e.g. again in text
Gaussian dispersion and the C parameter, in SSV decisianalysis with word occurrence counts as features, it is one
tree we may try different settings of discrete parameterf possible methods to eliminate the influence of text length
defining the way the tree is constructed and/or pruned. on classification).
An interesting (because quite unexpected) result, we ob-Our experience with using PCA is quite diverse. In the
tained in the first stage (testing just classification athons) case of the OCR efforts it was completely useless (as all
of our OCR competition effort [13]: simple 5NN classifierthe feature selection attempts). Actually it is not a susgyri



because in the 8x8 pixel images there is no unimportant

information—only the corner pixels are less important, but Trans Qytassity B_Rankingiompiate

still they are not considered noise in the data. On the other Transfomer Featufe Ranking
hand, PCA was the key to our best model for the Dorothea 8 =
dataset of the NIPS 2003 competition. t.
Some meta-learning approaches are based on the idea that v —
datasets which are similar with respect to some statistical gassifer
information will be best solved by similar methods. In the v‘j' ""!R"V
context of data transformations it is not justifiable, beszaa v
dataset before and after a transformation may be completely Fig. 2.  Typical feature selection

different. Moreover, very often different classificatioreth-  Fig- 1. Basic scenario for data transformation
. . . . ., transformation and classification
ods require different data preprocessing to obtain thedsgh
possible accuracy, so their runs on the same form of dataset
may be incomparable. Conversely: it is easy to create twaassification. Thus after proper substitutions, it may sedu
datasets with the same types of features, such that one véiterywhere a classifier is needed.
be perfectly classified by a decision tree and poorly by kNN, An example of a complex data transformation is presented
and the other with the opposite result. in figure 2. The transformation performs feature selection
The set of reasonable data transformations and classifidar a data table. It is split into two parts: first a ranking of
tion algorithms is not small, even for a single unit exhaugsti features is created and then proper selection performesd. It
search in the space of parameters is too expensive a@égain a meta-scheme, because it contains a placeholder for a
when different methods are combined, the solution spadeature ranking model. The feature selection part is a peeci
gets so huge that the search must be supported with somedel here, because given a ranking the selection is always
intelligence. The following sections address these proble performed in the same way. The meta scheme of figure 2 can
be put in the placeholder for data transformation in figure 1
IV. META-SCHEMES (the idea of nesting schemes, mentioned above).
. _ When striving to meta-learning goals, we must not forget
One .Of the. fundamental ideas of our meta-learning ali%l'boutjustification of the validation methods we use. Inectr
proach is driving the search by meansmita-scheme3hey validation usually leads to overoptimistic (thence usgles

are directed acyclic graphs (D.AG) of boxes. representml%sults, and provides no real confirmation of generalimatio
schemg pIacehoIde_rs and particular mo‘?'e's’ interconthec ilities of the machine. Thus, it is very important to valiel
according to th? mput—ou_tput connections. The SChe%t just the final model (e.g. classifier or approximator}, bu
place_holder§ def|r!e place§ in the DAG, where meta-l_earnlrijﬁe whole sequence of operations performed from raw data
algor!thms, in their adaptive Processes, tr_y to put difiere to the decider. No supervised part of the sequence is allowed
leaming models (they.need nOt to b.e just single methods, bﬂtﬂt be put outside of the validation process and treated as an
also some complex hierarchies which we aalhemes Re- element of the data preprocessing stage. The split of data

stricting the search to model stru_ctures compatible with t nalysis processes into data preprocessing and final fearni
ones given by the meta-schemes is a way to take advantag sovery common in the literature, but it is often not justifeab

experts meta-knowledge to drive the search process. At t €The idea of meta-schemes is also very useful in the

same time, such constraints facilitate significant redmptl context of validation. The meta-scheme presented in figure 3
of time consumed by the search. Thence, the key point {3 jjitates easy validation of the machines substitutedtie
to design such meta-schemes, that significantly reduce tgg onoiders. The meta-search can perform the substittio
search space, but still do not deprive us of interesting #sode ,,, the whole scenario by a single command, and check the
We may define meta-schemes to play the role of clagyjigation results afterward. The left side figure depitts t
sification, data transformation etc. (the role is defined b¥onfiguration time of the “Meta machine”. The “Validator”
inputs and outputs). We can nest the meta-schemes, i.e. fill,chine is to validate configurations of machines composed
the placeholders in one meta-scheme with an instantiatio 5 gata transformer and a classifier (substituted by the
of another meta-scheme, so there are no limits in cOmplegyeta machine” in runtime). The right side figure presents
schemes construction. The possibility of nesting is esigCi 5 jteration of the runtime. The “Meta machine” substituted

precious, for example when searching for most useful dafagqore feature selection for the “Transformer” and SVM for

f[ransforma_\tlo_ns, which may have different length (Unknowns|5ssifier” and executed the “Validator” which used train-

in the beginning of the search). _ test data distributor to validate the configuration pregdng
An example of a simple meta-scheme is presented {fe “Meta machine” (the details of the validation model are

figure 1, where we have two placeholders to be filled duringeyond the scope of this article, they can be found in [15]).
learning: one for a data transformation and another one for

a classification machine. The whole meta-scheme, has one V. THE META-LEARNING ALGORITHM
input (where training dataset is expected) and two outputs: Our meta-learning approach is a heuristic search in the
one for classification and the other for data preparatioareef pursuit of the optimum model. The search space is restricted
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Fig. 3. A meta-scheme for validation (configuration—leflesidiagram and runtime—right side diagram)

by means of meta-scheme basadchine generatorand a acceptably complex models, without waiting till the end
complexity control mechanisns introduced to reasonably of their adaptive processes (thus saving computation time)
conduct the search. In practice we use the Levin complexity augmented by a
The search procedure is a single loop in which we validat®easure of prediction of the fitness of the resulting model.
different machines starting with the fastest and simple&this extension is also very important, because it lets us
ones and proceeding to more and more complex and timignore some type of machines which usually declare low
consuming methods. Such order is natural because we do gotplexity, but have proven to be unsuccessful, so it is more
want to test complicated models when simple models provideasonable to try other, more complex machines but possibly
satisfactory solutions or run time-consuming processesrwhmuch more suitable. It is also sensible, to try from time to
fast ones perfectly do the job. time, some less convincing machine constructions to leave
The machine generators use constraints defined as metame chance for a surprising invention.
schemes to build more and more complex machine architec-as soon as the first model is built (regardless its optimal-
tures (compatible with the meta-schemes) and pass themig® we may put restrictions on new machines (both running
the main meta-learning algorithm, when requested. time and model complexity). The methods, for which we can
Machine complexity control is used both to decide thgredict (or at least show lower bounds of) model complexity
order of validation of candidate machines, and also to avolghd running time, are put into the proper place in the queue of
long-lasting processes which could block the whole proceggndidates, that must be validated. The methods, for which
(sometimes it is not possible to guess the complexity ithe prediction is not possible, are put to the queue on the
advance, so a machine which declares low complexity mMayasis of a rough complexity prediction, and their execuison
turn out to be very expensive, and the main meta-learningoperly controlled. Thanks to using Levin-like complgxit
loop must detect it and brake such a subprocess). we may calculate the thresholds of acceptable values of
Obviously the methods which are fast should be testadethod run time and model complexity. For estimating
before more time consuming ones and simple models aggodel complexity we use a criterion resembling Minimum
preferable to complex ones, when their quality does noediff pescription Length, which reflects the numbers and types of
significantly. Thus, the complexity measure must reflechbotyajyes describing the model.
m_odel structure complexity and machme “”_‘e complex.|ty. In Such control of the search process results in testing models
thls_, con_text, a comfortable measure is thal!n complexny (more or less) in the following order:
which (in the case of learning machines) is defined as the
sum of model (description) length and logarithm of the time « simple methods of different types (e.g. classifiers of
of its adaptive method execution: different nature),
L + log(T) @) . c_ombinations pf Qifferent data tran;formation algo-
' rithms (normalizations, feature selection, vector selec-
Control of this complexity allows us to stop long-lasting tion etc.) and methods specialized in solving problems
processes and those, that will certainly end up with un- of the type (classifiers, approximators etc.),



« multiple data transformations, both sequential (like starmethod designer (a human expert) is to define such set of
dardization followed by feature selection) and paralleeta-schemes and items to fill placeholders, that allows to

(like committees of feature selection models), avoid spending time on testing insensible model structures
« ensemble methods including committees respectirand to point out the most promising structures. The task of
members’ competence. meta-learning algorithms that use meta-schemes is not only

Apart from searching for the optimal machines hierarchyo search for the most accurate solutions, but also to learn
our meta-learning algorithms perform some searches for tfi®m the search experience. Such learning includes:

optimal values of machines parameters. The two types of, Finding the correlations of occurring different items

search are in fact mixed into a single search process. The in most accurate results. It will enable learning which

results of parameters searches are appropriately stotd an data transformations are most useful for given classifi-
then used also in other machine configurations, however cation model, finding some areas of model space with
it must be emphasized here, that for example adding a structures successful in similar environment, so that
data transformation to a machine structure may signifigantl a discovery of a successful model structure, may be
change the task, so after such operation, additional search followed by testing some other structures which have
for optimum parameter values of final decision methods performed similar in similar circumstances, etc.

is necessary, though it can take advantage of the results, Finding new successful complex structures and con-
of previous searches for the same parameters to adjust the verting them into meta-schemes (which we aailbta

density of the search. abstractior) by replacing proper substructures by place-
Our system architecture includes a unified meta- holders.

parameters description system, that allows meta-search to, Extracting meta-rules, describing the advantageous di-
control parameters of any machine available in the system rections of the search.
without any knowledge of the internals of the machine. The , Depositing the knowledge they gain in a reusable

descript_ions usually include the information about thepsco meta-knowledge repository. The possibility to exchange
of sensible values and the type of the parameter changes meta-learning experience is very precious, because
(discrete, linear, exponential etc.). Moreover, a metarer saves much time—otherwise each meta-learning method

can be provided with information about how to efficiently would have to learn from scratch instead of taking

perform the search (e.g. committee decision modules should advantage of what other meta-learners have already
be tried just after the member-models have been created, to gained.

reduce computation time). To avoid repetitions in running It is important to provide a uniform representation of the

adaptive processes we have created a cache system, whigh, \nowledge, regardless its source, so that for example
when asked again for the same mode_l, does not build it twicg,o knowledge may be exchanged, the expert knowledge may
but shares the one created earlier (in future we plan also,g extended, adjusted according to performed tests, etc. It

cachg system which °°“"? save the data to a disk and logd) ¢ pe capable of expressing rules of miscellaneous types,
from it when necessary—it will allow to take advantage OEoncerning different levels of abstraction. etc

the cache also between different instances of the systean, ev ¢, - representation of the meta-knowledge satisfying

running on different machines). these conditions is itself a subject for a broad discussion,
The main loop of our meta-search may be seen as 1 we do not go into more details here

infinite procedure, which tries more and more complicated
models for given data. After the first model is built, at VIl. SUMMARY

each time of the search, we can get the information aboutW h d basic id d | ¢
currently best model. Thus, there is no single stop point of e have presented basic ideas and some examples o

our meta-search. We may stop after some pre-defined ti r meta-learning approaches based on intelligent search.

on user request, after obtaining appropriately small eifor '(;’he rrgaj(cj)r d|}‘fer_enche It_)etween purh apﬁ)]roach _ar|1d thl(:]fones
no improvement occurred within a time period etc. escribed so far in the literature Is that the crucial pad

We start with some meta-knowledge, which continuousl{]'et@-1€aming is the heuristic search continuously aadyz
changes according to what we learn. First meta-machin f,ee_‘?'F’aCK of running d|ff§rent tests. It gives much more
use only some general meta-knowledge provided by experp\QSSIbllltl-eS than pr_owdmg simple rankings of methodsd an
but then the meta-knowledge may be appropriately adjust&&nsmfc“ng committees of m.odels. ) . -
and exchanged between different meta-learning methods.The idéa of meta-schemes is very precious tool in defining
It is very important to differentiate between the generép(_eunstlcs_for the search process. Th(_e meta search starting
knowledge (averaged for all the data sets) and the knowled§dh the simplest models and proceeding to more and more

in the context of particular data, because they should hay@mPIex ones by means of the abstraction levels and Levin
different influence on the meta-search. complexity control turned out to be successful and promisin

since its gates to further development are open, and new
VI. ADVANCED TECHNIQUES OF METALEARNING directions of advanced meta-learning are evident. We \xlie
Meta-schemes provide very powerful means for metahat quite soon such techniques will be more successful than
search restriction and direction. The task of meta-legrnirhuman driven searches.
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