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Abstract— Recent years have revealed growing need for
efficient meta-learning. For a much longer time it has been
known that there is no single adaptive algorithm, eligible
to provide satisfactory (i.e. close to optimal) solutions for
every kind of problem, however computing power facilitates
practical applications of more and more sophisticated learning
strategies and more and more thorough search in the space
of candidate models. Because testing all possible models isnot
(and will never be) feasible, we need intelligent tools to combine
human expert knowledge, the knowledge extracted by means
of computational intelligence and different search strategies
to disclose the nature of a problem and provide attractive
models. We present some techniques, we have successfully used
in our meta-learning approaches, describe the crucial ideas of
our general architecture for meta-learning, and show partial
examples.

I. I NTRODUCTION

The need for successful meta-learning is growing. For-
tunately, at the same time, advanced learning is getting
more and more feasible. For now, searching for as accurate
models as possible, has been staying within the domain of
human intelligence, but we are never as precise, thorough
and systematic as computers can be, so there is no reason
why machines could not perform such tasks better than us.

The progress of computational capabilities, already now,
facilitates successful artificial approaches to meta-learning.
Obviously, searching for optimal models is NP-hard, so
the progress in computing hardware does not facilitate a
complete search through the space of possible models, so
we need (and will always need) intelligent systems for this
purpose.

There may be many different views of meta-learning and
many different algorithms putting stress on different aspects
of the field. Till now, the term “meta-learning” has been
used in several meanings. For example, some articles use this
name when talking about building rankings of methods on
the basis of their predicted eligibility for solving particular
tasks [1], [2]. The rankings were constructed according to
some similarity of the problem being solved to other known
problems. The similarity was measured as a distance in the
space of datasets, where each dataset was described by a
number of quantities corresponding to the types of values
contained within the data, some statistical coefficients [3],
results obtained with some simple learning algorithms [4],
[5] (this technique was given a name oflandmarking), some

features of decision trees built for the data [6], etc. In some
other approaches instead of measuring similarity between
datasets, decision trees were used to decide which algorithm
should perform better [7].

Another meaning was given to meta-learning in numerous
articles devoted to ensemble methods, since building complex
structured models can also be seen as a meta-level task.
The complex models include different kinds of committees
(also the ones considering member-model competence when
making decisions [8], [9]), stacking models etc. [10], [11],
[12]

All the above-mentioned methods build complex models or
prepare model rankings to act as method selection advisers,
which is not satisfactory for us. We understand meta-learning
as automation of the process of finding most accurate models
for given task (which eventually should replace human inter-
action). It is not enough to compare the datasets to provide a
reliable advise on which method can be more useful to solve
the problem, especially because different methods usually
require different data preprocessing to obtain optimal results
and data transformations may move datasets into completely
different point in the space of datasets. Thus we emphasize
the need for an intelligent search for the (sub)optimal solu-
tion which can not be based only on some statistical informa-
tion about the form of the data, but must integrate meta-level
information of different kinds and sources, including human
expert knowledge and the knowledge gained by means of
computational intelligence (CI).

II. GOALS OF META-LEARNING

From our point of view, meta-learning is the process
of learning how to learn, to obtain as good solution to
given problem as possible. It corresponds exactly to what
humans are trying to do when mining given data: in order
to find very good models we try many different methods,
their combinations etc., observe and analyze the subsequent
results and use our general knowledge about building CI
models, to control the search in such a way that only the
sensible combinations are tested and those maximizing our
suspicions about being attractive. So meta-learning is a very
complex process incorporating the search for (sub)optimal
solutions, using meta-knowledge to conduct the search and
(simultaneously) gaining new meta-knowledge.



Meta-learning aims at finding models which optimize
some criteria. It is not restricted to maximizing classification
accuracy, minimizing regression error or any limited set of
tasks. It is important to have the possibility of providing
the criterion without the need of any changes within the
engine of the data mining system. Fortunately it is not very
difficult in search-based approaches. Our system provides
such openness and has already been used to reach different
goals. Here we discuss only classification tasks, but two
measures of model attractiveness: classical accuracy and
balanced accuracy.

In classification problems, the goal is usually to maximize
the classification accuracy (or balanced accuracy), but its
estimation can never be devoid of error. Thus we are often
interested in high stability of our validation results (i.e. the
minimization of their variance). To achieve this, we prefer
maximization of

µ − ασ, (1)

whereµ is an estimation of the expected value of accuracy,σ

is the standard deviation of the accuracy within the validation
tests, andα is a parameter (usually equal to 1 in our
approaches). Such measure is sound with the ideas of testing
statistical hypotheses and its optimization may be seen as the
maximization of the threshold, below which we will not fall
with given probability (equal to 0.5 in the case ofα = 0,
and greater for larger values ofα, assuming that the mean
is equal to the median).

III. T HE META-SPACE

By now, our meta-learning approaches have been applied
only to classification problems. In such cases, the solution
space contains different classification models (simple or
complex) built by machines trained on the data obtained with
a number of different transformations.

The set of classification algorithms, we usually examine
includes:

• k Nearest Neighbors,
• Naive Bayesian Classifier,
• Support Vectors Machines (with Gaussian or linear

kernel),
• SSV decision tree,
• Feature Space Mapping neural network.

The list is consistent with our assumption that methods
of different nature should be tested—it contains statistical
methods, neural networks, decision trees and SVM (which,
with linear kernel, is a linear discriminant method).

For each model we need to search through the space of
possible values of the parameters. For example: in kNN
model we can search for optimal number of neighbors
to analyze, in SVM we can determine the best values of
Gaussian dispersion and the C parameter, in SSV decision
tree we may try different settings of discrete parameters
defining the way the tree is constructed and/or pruned.

An interesting (because quite unexpected) result, we ob-
tained in the first stage (testing just classification algorithms)
of our OCR competition effort [13]: simple 5NN classifier

significantly outperformed all the other classifiers, however
it was not the final result—after some data transformations
we obtained significantly better results (one of them won the
contest) and other classifiers performed better than 5NN.

Our data mining experience (like the one with the OCR
competition) shows, that proper data transformation is the
crucial point of a successful model. Even when dealing
with classification problems, it is almost never possible to
get optimum results with a classification algorithm alone.
Moreover, finding appropriate data transformation is often
much more difficult than finding optimal configuration of a
classification algorithm, because there are plenty of transfor-
mations that may be performed, and they may be combined
in many different ways, so that it is easy to be entrapped in
a combinatorial explosion. It is important not only to avoid
senseless combinations, but also to drive the search into most
attractive directions.

The basic transformations we use are:

• different kinds of normalizations (rescaling to[0, 1] or
[−1, 1] interval, standardization, the same methods with
respect to the data without outliers etc.)

• feature selection methods (based on correlation coeffi-
cient, F-rank, SSV criterion and some measures derived
from information theory and also some ensemble meth-
ods),

• numerous vector selection methods [14],
• discretization and its reverse (converting continuous

features to symbolic),
• Principal Components Analysis (PCA), usually accom-

panied by selection of several PCs.

Even in the case of standardization we have many possi-
bilities. Apart from eliminating outliers, we may consider
per-feature standardization (the classical approach, where
each feature is standardized independently) andper-dataset
standardization, which results in mean 0 and variance 1
within the values of all features together—it makes more
sense for instance in the case of text analysis data, where
word occurrences are counted and thus it is advantageous to
keep the proportion between counts for different words. The
per-dataset standardization was crucial in our participation
in the NIPS 2003 Feature Selection Challenge, where one of
the datasets was devoted to text classification (as it turned
out after contest adjudication).

Another version of normalization was helpful in our
OCR data analysis. Our models erroneously classified some
vectors representing numbers with very easy to understand
shape, but with lower pixel intensity than in the case of
other numbers. We called the transformationdarkening,
but in fact it can be seen as aper-vector normalization,
which may be useful also in other tasks (e.g. again in text
analysis with word occurrence counts as features, it is one
of possible methods to eliminate the influence of text length
on classification).

Our experience with using PCA is quite diverse. In the
case of the OCR efforts it was completely useless (as all
the feature selection attempts). Actually it is not a surprise,



because in the 8x8 pixel images there is no unimportant
information—only the corner pixels are less important, but
still they are not considered noise in the data. On the other
hand, PCA was the key to our best model for the Dorothea
dataset of the NIPS 2003 competition.

Some meta-learning approaches are based on the idea that
datasets which are similar with respect to some statistical
information will be best solved by similar methods. In the
context of data transformations it is not justifiable, because a
dataset before and after a transformation may be completely
different. Moreover, very often different classification meth-
ods require different data preprocessing to obtain the highest
possible accuracy, so their runs on the same form of dataset
may be incomparable. Conversely: it is easy to create two
datasets with the same types of features, such that one will
be perfectly classified by a decision tree and poorly by kNN,
and the other with the opposite result.

The set of reasonable data transformations and classifica-
tion algorithms is not small, even for a single unit exhaustive
search in the space of parameters is too expensive and
when different methods are combined, the solution space
gets so huge that the search must be supported with some
intelligence. The following sections address these problems.

IV. M ETA-SCHEMES

One of the fundamental ideas of our meta-learning ap-
proach is driving the search by means ofmeta-schemes. They
are directed acyclic graphs (DAG) of boxes representing
scheme placeholders and particular models, interconnected
according to the input–output connections. The scheme
placeholders define places in the DAG, where meta-learning
algorithms, in their adaptive processes, try to put different
learning models (they need not to be just single methods, but
also some complex hierarchies which we callschemes). Re-
stricting the search to model structures compatible with the
ones given by the meta-schemes is a way to take advantage of
experts meta-knowledge to drive the search process. At the
same time, such constraints facilitate significant reduction
of time consumed by the search. Thence, the key point is
to design such meta-schemes, that significantly reduce the
search space, but still do not deprive us of interesting models.

We may define meta-schemes to play the role of clas-
sification, data transformation etc. (the role is defined by
inputs and outputs). We can nest the meta-schemes, i.e. fill
the placeholders in one meta-scheme with an instantiation
of another meta-scheme, so there are no limits in complex
schemes construction. The possibility of nesting is especially
precious, for example when searching for most useful data
transformations, which may have different length (unknown
in the beginning of the search).

An example of a simple meta-scheme is presented in
figure 1, where we have two placeholders to be filled during
learning: one for a data transformation and another one for
a classification machine. The whole meta-scheme, has one
input (where training dataset is expected) and two outputs:
one for classification and the other for data preparation before

Fig. 1. Basic scenario for data
transformation and classification

Fig. 2. Typical feature selection
transformation

classification. Thus after proper substitutions, it may be used
everywhere a classifier is needed.

An example of a complex data transformation is presented
in figure 2. The transformation performs feature selection
for a data table. It is split into two parts: first a ranking of
features is created and then proper selection performed. Itis
again a meta-scheme, because it contains a placeholder for a
feature ranking model. The feature selection part is a precise
model here, because given a ranking the selection is always
performed in the same way. The meta scheme of figure 2 can
be put in the placeholder for data transformation in figure 1
(the idea of nesting schemes, mentioned above).

When striving to meta-learning goals, we must not forget
about justification of the validation methods we use. Incorrect
validation usually leads to overoptimistic (thence useless)
results, and provides no real confirmation of generalization
abilities of the machine. Thus, it is very important to validate
not just the final model (e.g. classifier or approximator), but
the whole sequence of operations performed from raw data
to the decider. No supervised part of the sequence is allowed
to be put outside of the validation process and treated as an
element of the data preprocessing stage. The split of data
analysis processes into data preprocessing and final learning
is very common in the literature, but it is often not justifiable.

The idea of meta-schemes is also very useful in the
context of validation. The meta-scheme presented in figure 3
facilitates easy validation of the machines substituted for the
placeholders. The meta-search can perform the substitutions,
run the whole scenario by a single command, and check the
validation results afterward. The left side figure depicts the
configuration time of the “Meta machine”. The “Validator”
machine is to validate configurations of machines composed
of a data transformer and a classifier (substituted by the
“Meta machine” in runtime). The right side figure presents
an iteration of the runtime. The “Meta machine” substituted
F-score feature selection for the “Transformer” and SVM for
“Classifier” and executed the “Validator” which used train-
test data distributor to validate the configuration prepared by
the “Meta machine” (the details of the validation model are
beyond the scope of this article, they can be found in [15]).

V. THE META-LEARNING ALGORITHM

Our meta-learning approach is a heuristic search in the
pursuit of the optimum model. The search space is restricted



Fig. 3. A meta-scheme for validation (configuration—left side diagram and runtime—right side diagram)

by means of meta-scheme basedmachine generatorsand a
complexity control mechanismis introduced to reasonably
conduct the search.

The search procedure is a single loop in which we validate
different machines starting with the fastest and simplest
ones and proceeding to more and more complex and time-
consuming methods. Such order is natural because we do not
want to test complicated models when simple models provide
satisfactory solutions or run time-consuming processes when
fast ones perfectly do the job.

The machine generators use constraints defined as meta-
schemes to build more and more complex machine architec-
tures (compatible with the meta-schemes) and pass them to
the main meta-learning algorithm, when requested.

Machine complexity control is used both to decide the
order of validation of candidate machines, and also to avoid
long-lasting processes which could block the whole process
(sometimes it is not possible to guess the complexity in
advance, so a machine which declares low complexity may
turn out to be very expensive, and the main meta-learning
loop must detect it and brake such a subprocess).

Obviously the methods which are fast should be tested
before more time consuming ones and simple models are
preferable to complex ones, when their quality does not differ
significantly. Thus, the complexity measure must reflect both
model structure complexity and machine time complexity. In
this context, a comfortable measure is theLevin complexity,
which (in the case of learning machines) is defined as the
sum of model (description) length and logarithm of the time
of its adaptive method execution:

L + log(T ). (2)

Control of this complexity allows us to stop long-lasting
processes and those, that will certainly end up with un-

acceptably complex models, without waiting till the end
of their adaptive processes (thus saving computation time).
In practice we use the Levin complexity augmented by a
measure of prediction of the fitness of the resulting model.
This extension is also very important, because it lets us
ignore some type of machines which usually declare low
complexity, but have proven to be unsuccessful, so it is more
reasonable to try other, more complex machines but possibly
much more suitable. It is also sensible, to try from time to
time, some less convincing machine constructions to leave
some chance for a surprising invention.

As soon as the first model is built (regardless its optimal-
ity) we may put restrictions on new machines (both running
time and model complexity). The methods, for which we can
predict (or at least show lower bounds of) model complexity
and running time, are put into the proper place in the queue of
candidates, that must be validated. The methods, for which
the prediction is not possible, are put to the queue on the
basis of a rough complexity prediction, and their executionis
properly controlled. Thanks to using Levin-like complexity,
we may calculate the thresholds of acceptable values of
method run time and model complexity. For estimating
model complexity we use a criterion resembling Minimum
Description Length, which reflects the numbers and types of
values describing the model.

Such control of the search process results in testing models
(more or less) in the following order:

• simple methods of different types (e.g. classifiers of
different nature),

• combinations of different data transformation algo-
rithms (normalizations, feature selection, vector selec-
tion etc.) and methods specialized in solving problems
of the type (classifiers, approximators etc.),



• multiple data transformations, both sequential (like stan-
dardization followed by feature selection) and parallel
(like committees of feature selection models),

• ensemble methods including committees respecting
members’ competence.

Apart from searching for the optimal machines hierarchy,
our meta-learning algorithms perform some searches for the
optimal values of machines parameters. The two types of
search are in fact mixed into a single search process. The
results of parameters searches are appropriately stored and
then used also in other machine configurations, however
it must be emphasized here, that for example adding a
data transformation to a machine structure may significantly
change the task, so after such operation, additional search
for optimum parameter values of final decision methods
is necessary, though it can take advantage of the results
of previous searches for the same parameters to adjust the
density of the search.

Our system architecture includes a unified meta-
parameters description system, that allows meta-search to
control parameters of any machine available in the system
without any knowledge of the internals of the machine. The
descriptions usually include the information about the scope
of sensible values and the type of the parameter changes
(discrete, linear, exponential etc.). Moreover, a meta-learner
can be provided with information about how to efficiently
perform the search (e.g. committee decision modules should
be tried just after the member-models have been created, to
reduce computation time). To avoid repetitions in running
adaptive processes we have created a cache system, which,
when asked again for the same model, does not build it twice,
but shares the one created earlier (in future we plan also a
cache system which could save the data to a disk and load
from it when necessary—it will allow to take advantage of
the cache also between different instances of the system, even
running on different machines).

The main loop of our meta-search may be seen as an
infinite procedure, which tries more and more complicated
models for given data. After the first model is built, at
each time of the search, we can get the information about
currently best model. Thus, there is no single stop point of
our meta-search. We may stop after some pre-defined time,
on user request, after obtaining appropriately small error, if
no improvement occurred within a time period etc.

We start with some meta-knowledge, which continuously
changes according to what we learn. First meta-machines
use only some general meta-knowledge provided by experts,
but then the meta-knowledge may be appropriately adjusted
and exchanged between different meta-learning methods.
It is very important to differentiate between the general
knowledge (averaged for all the data sets) and the knowledge
in the context of particular data, because they should have
different influence on the meta-search.

VI. A DVANCED TECHNIQUES OF META-LEARNING

Meta-schemes provide very powerful means for meta-
search restriction and direction. The task of meta-learning

method designer (a human expert) is to define such set of
meta-schemes and items to fill placeholders, that allows to
avoid spending time on testing insensible model structures
and to point out the most promising structures. The task of
meta-learning algorithms that use meta-schemes is not only
to search for the most accurate solutions, but also to learn
from the search experience. Such learning includes:

• Finding the correlations of occurring different items
in most accurate results. It will enable learning which
data transformations are most useful for given classifi-
cation model, finding some areas of model space with
structures successful in similar environment, so that
a discovery of a successful model structure, may be
followed by testing some other structures which have
performed similar in similar circumstances, etc.

• Finding new successful complex structures and con-
verting them into meta-schemes (which we callmeta
abstraction) by replacing proper substructures by place-
holders.

• Extracting meta-rules, describing the advantageous di-
rections of the search.

• Depositing the knowledge they gain in a reusable
meta-knowledge repository. The possibility to exchange
meta-learning experience is very precious, because
saves much time—otherwise each meta-learning method
would have to learn from scratch instead of taking
advantage of what other meta-learners have already
gained.

It is important to provide a uniform representation of the
meta-knowledge, regardless its source, so that for example
the knowledge may be exchanged, the expert knowledge may
be extended, adjusted according to performed tests, etc. It
must be capable of expressing rules of miscellaneous types,
concerning different levels of abstraction, etc.

Exact representation of the meta-knowledge satisfying
these conditions is itself a subject for a broad discussion,
so we do not go into more details here.

VII. SUMMARY

We have presented basic ideas and some examples of
our meta-learning approaches based on intelligent search.
The major difference between our approach and the ones
described so far in the literature is that the crucial part ofour
meta-learning is the heuristic search continuously analyzing
the feedback of running different tests. It gives much more
possibilities than providing simple rankings of methods and
constructing committees of models.

The idea of meta-schemes is very precious tool in defining
heuristics for the search process. The meta search starting
with the simplest models and proceeding to more and more
complex ones by means of the abstraction levels and Levin
complexity control turned out to be successful and promising,
since its gates to further development are open, and new
directions of advanced meta-learning are evident. We believe,
that quite soon such techniques will be more successful than
human driven searches.
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