
Gained knowledge exchange and analysis for
meta-learning

Norbert Jankowski and Krzysztof Grąbczewski
Department of Informatics

Nicolaus Copernicus University
Toruń, Poland

http://www.is.umk.pl/
{norbert|kgrabcze}@is.umk.pl

Abstract— Building accurate and reliable complex machines
is not trivial (but necessary in most real life problems). Typical
ensembles are often unsatisfactory. Meta-learning techniques can
be much more powerful in composing optimal or close to optimal
solutions to given tasks.

Efficient meta-learning is possible only within a versatile and
flexible data mining framework providing uniform procedures for
dealing with different kinds of methods and tools for thorough
analysis of learning processes and their results.

We propose a methodology for information exchange be-
tween machines of different abstraction levels. Inter-machine
communication is based on uniform representation of gained
knowledge. Implemented in a general data mining framework,
it provides tools for sophisticated analysis of adaptive processes
of heterogeneous machines. The resulting meta-knowledge is a
brilliant information source for further meta-learning.

I. I NTRODUCTION

Most real life classification (and other data mining) tasks
are so hard, that single simple classifiers are very unlikely
to successfully solve them. The need for complex machines
including different data transformations and classification en-
sembles is undeniable. Even simple ensemble construction
methods often end up with poor results because of different
reasons. To obtain high classification scores for different
datasets of different kinds, we need tools which facilitate
not only construction of classifiers, but also proper data
transformation and proper validation of complex structures of
machines.

Techniques leading to satisfactory solutions of different
problems are the subject of research calledmeta-learning.
Although this term has been used in numerous articles in
the sense of ranking algorithms according to descending
probability of being successful when applied to given data [1],
[2] or in the sense of simple ensembles construction, we use it
in much broader sense of learning how to learn different tasks.
Our meta-learning ideas combine different heuristic search
procedures based on knowledge extracted from past learning
scenarios with active analysis of the results of application of
different methods to given data.

Efficient meta-learning techniques will more and more
often present us successful models, which would be very
difficult for humans to find, because of their unusual structures.
Some of our research has already born the fruits of very

high accuracies of our classifiers solving tasks of the NIPS
2003 Feature Selection Challenge1 [3] and the Handwritten
Digit Recognition Competition2 organized with The Eighth
International Conference on Artificial Intelligence and Soft
Computing in 2006. The models we found were usually com-
plex model structures consisting of some data transformations
like standardization, feature selection, features construction
based on principal components analysis and some committees
of classifiers. We have also examined some aspects of member-
model competence in classification committees [4].

All such meta-learning approaches require large amount of
calculations (e.g. to validate the candidate machines) before
they point to most attractive solutions. Many candidates must
be examined, numerous combinations validated often with
different optimization criteria. To make it all possible weneed
a general data mining system, which efficiently manipulates
such complex machines. Such system must provide:

• uniform way of machine configuration and machine
creation—the possibilities of adding, configuring, train-
ing, testing and removing machines in a standard way,
implemented as a set of project management routines in
such a way that does not burden the authors of particular
machines with the administration efforts,

• uniform access to results of machine learning and tests,
so that meta-learning machines do not need much (or
even any) knowledge about the specificity of particular
machines,

• uniform query system for gathering information from
submachines, facilitating versatile and efficient analysis
of gathered results.

The mechanisms must be uniform but not too restrictive, i.e.
general enough to fit any kind of adaptive machines (also the
results of machines which will be constructed in future).

The abstraction of management routines facilitates com-
munication between different machines within the project on
appropriate, different levels of abstraction. Dependently on
particular needs, general or detailed questions may be asked in
a common language without the necessity to know the details
of the machines being used. This provides an excellent source

1http://www.clopinet.com/isabelle/Projects/NIPS2003/
2http://www.icaisc.pcz.czest.pl/competition.htm



of knowledge (meta-knowledge) not only for basic analysis of
datasets, but also for advanced meta-learning.

During recent years we have been working on a system,
which combines all the advantages mentioned above and offers
unique universality and versatile kernel for wide applications
in data mining, with special emphasis on advanced meta-
learning. There are many data mining systems available on
the market (freeware and commercial), but we don’t know
any, providing so rich general functionality of the kernel and
being so suitable for multiple complex machines management.

Section II sketches some ideas of the system with special
emphasis on the topics of this article (more information
is presented in [5]. Next, in section III, we describe the
abstraction of machine results representation. In sectionIV,
the general methodology of exploring the results is presented
and illustrated by examples.

II. FUNDAMENTAL IDEAS OF OUR DATA MINING SYSTEM

Our system is a general data mining tool eligible for
any computational intelligence applications. It’s abstraction is
based on generalized definitions ofmachineand model. An
abstract view ofinputs and outputs, parametersand results
provides general tools for machine management, independent
of the kind of the algorithm.

a) Machines and models:In computational intelligence,
the termlearning machine(learning method, shortlymachine)
is used to describe anadaptive algorithm. A modelis defined
as the final result of application of a machine. Our approach
extends these terms to encompass a broader (than usual) range
of components, because from the point of view of a general
data analysis framework there is no reason to differentiate
between the algorithms for classification, approximation or
clustering and those for loading data, visualizing some aspects
of data, testing classifiers etc.

We define amodelas a result of application of amachine
(an algorithm) with some particularparametersto particular
input data. A model is an information carrier—this information
may be passed to other models by means of modeloutputsand
may be put into a specialresults repository.

Such abstract idea of machine and model fits different
algorithms corresponding to different levels of abstraction. It
encompasses classifiers, data loaders, visualization techniques,
tests like cross-validation, etc., and also a part of a complex
algorithm if only we specify its inputs, outputs etc. Such
solution is very attractive from the point of view of the
efficiency of calculations, because it allows to reuse partsof
models instead of performing multiple calculations of the same
values.

b) Machine hierarchies: All the machines within a
project compose two hierarchies. One is defined by theinput–
output relationand has a form of a Directed Acyclic Graph
(DAG). The other is defined by theparent–child relationand
is also a DAG, and more precisely a tree. The parent–child
relation is also calledsubmachine relationand results from
the fact, that machines are allowed to run other machines and
use resulting models for their purposes.

Fig. 1. Decision tree machine structure

c) Inputs vs parameters:The difference between inputs
and parameters is that the function of inputs is to provide
means for exploiting outputs of other machines, while param-
eters do not interfere with external machines but specify how
the adaptive process of the machine will operate on inputs to
generate outputs and results.

d) Outputs vs results repository:The distinction between
outputs and results is subtler and concerns the way they can
be used by external machines. Both are the effects of the
adaptive process of the machine, but while the outputs are to
be bound with other machine inputs, the results are deposited
in a special repository, which makes them available even after
the model itself is released (for example when a vast amount of
machine structures is tested, and together they would occupy
too much memory). From the other side, the nature of outputs
is to provide not only static information about the results,
but also methods, to perform the task of the model (e.g.
classification), while results repository is rather predestined
to contain objects with sort of static information. Another
application of the results repository is machine labeling:for
example an ensemble can label its submachines to enable easy
further analysis of their usefulness for that ensemble, to filter
out a group of submachines and calculate some statistics for
the group etc.

An example of the scenario with inputs, parameters, outputs
and results is shown in figure 1. It shows a decision tree ma-
chine with single input of training data and some parameters
of the adaptive process. The machine exhibits classification
routine as its output and deposits some numbers in the results
repository.

e) Machine abstraction:All the ideas mentioned above
are general enough to fit any kind of machine (classifier, data
loader, classification test, etc.). As a result we created some
fundamental classes to implement the common functionality.
All the aspects of access to inputs, output exhibition and
management, access to submachines and their configurations,
results repository navigation etc. have been implemented in
MachineBase class. The class is common to all possible
machines and allows machine implementers to work only on
the crucial code for particular machines.

Similar idea stands behind the configuration parameters of
the machine. Hence, we have created a generalConfigBase
class implementing the common functionality related to ma-
chine configuration and available to machine developers.

The system has the feature of machine reusability, i.e. if
two or more machines of the same configuration are added



to the project, the calculations are performed once, and the
resulting machine is put into appropriate contexts. To enable
such contexts, each machine is adequately encapsulated (the
class which implements this, is calledCapsule).

III. R ESULTSREPOSITORY

To satisfy the uniformity of the results management, we
created external (to the machine) results repository containing
items in the form oflabel–valuepairs. The stringlabel lets
queries recognize the values, which can beobjectscontaining
information of any type. The object may be a number, string,
collection of other values, etc. In most cases objects represent
numbers or collections of numbers.

For an example, consider a “classification test” machine. It
should certainly have two inputs (a classifier and a dataset to
classify) and preferably two outputs (one exhibiting the labels
calculated for the elements of the input dataset and one for the
confusion matrix). If we want to add the accuracy computed
within such model to the results repository, all we have to do
is to submit the appropriate label–value pair. To add the value
of accuracy variable labeled as"Accuracy", we need to call:

machineBase.AddToResultsRepository("Accuracy", accu-
racy);
where themachineBase is the object ofMachineBase class
corresponding to our test machine. Note that each machine
and its capsule have their own results repository which is not
shared by all machines but is accessible from machines of
higher levels (parent machines). Exactly in the same way any
other machine can add anything to the results repository, for
example SVM can provide the value of its margin, an ensemble
can inform about its internals etc.

Another useful possibility (especially for complex ma-
chines) is that the addition of label–value items can be done
not only in the context of the subject machine, but also in the
context of its capsule (which can be seen here as a branch
leading to the machine). In this way, the parent machine can
add some information about its submachine, which depends
on the context in which the child machine occurs, and which
the child can not be aware of.

f) Cross-validation example:Consider an example of a
well known classifier testing methodology: the 10-fold cross-
validation (CV) repeated 10 times. To prepare it, a general
machine calledRepeater may be used, because CV test is just
its special case. In general it uses the concept ofdistribution
boards and distributors. The distribution board is used to
generate a number of distributors, and each distributor defines
the inputs for a scenario being repeated. In the case of repeated
CV test, the Repeater uses CV distribution board, which
generates 10 pairs of train-test datasets in a random way, each
pair is exhibited by a distributor, and is used to perform a
single CV fold. TheRepeater performs the whole procedure
10 times, so as a result, we get 100 submachines. Thanks to
the possibility of labeling branches (capsules), queries may
group submachines by their membership to given repetition
or to thei-th folds of the CV tests. This significantly enriches

the analysis capabilities of the system (see the next section for
more details).

To label the branch to chosen submachine a method on its
capsule is called:

submachineCaps.AddToResultsRepository("Repetition",
repetition);

submachineCaps.AddToResultsRepository("CV-fold",
cvFold);
The object part of the results repository pair is optional.
Sometimes it is enough to use just the label, for example to
sign given submachine as a distribution board or a distributor:

distrBoardCaps.AddToResultsRepository("Distribution
board");

distributorCaps.AddToResultsRepository("Distributor");
This form is useful also for machines, presenting their results,
which have the form of a flag (the same functionality as with
boolean type values).

g) Commentators:To extend the functionality of results
repository, we have come up with the idea of machinecom-
mentators. It facilitates extending the information in results
repository about particular machines by external entities. The
necessity of such solution comes from the fact that the author
of the machine can not foresee all the needs of future users
of the machine and can not add all interesting information
to the results repository. On the other hand it would not
be advantageous to add much information to the repository,
because of the danger of high memory consumption, which
results repository is designed to minimize (in the case of
memory-consuming machines they are freed and only the most
necessary information is kept in the repository).

Commentators have access to machine’s inputs and out-
puts, machine configuration, and they may also calculate new
values. They may extract the knowledge and put it to the
repository, from any part of the machine, its neighborhood,
or even its submachines.

Commentators can be assigned to machines as elements of
the ConfigBase class (see next section for more). The number
of results repository items for given machine and the size
of objects deposited there are not limited. In order to avoid
running out of memory, it is not recommended to deposit
too much information in the repository, especially because
it is hard to predict what will be really useful in further
analysis. An alternative is to use commentators which can be
assigned to machines when necessary, saving both memory
and computation time.

To better understand the idea of commentators consider the
example of classification test machine introduced in section
III. By default it deposits to theresults repositoryonly the
accuracy of the input classifier computed for the input dataset,
as the most required result. Several other values may also be
interesting, and could be deposited in the repository, however
to save memory they are not put there by default.

Sometimes, it can be useful to add confusion matrix to the
results repository. This can be done very easily because the
confusion matrix is already an output of the test machine, soit
is available without additional calculations. To add confusion



matrix, a commentator dedicated to output of typeDataTable
can be created. It needs just to send the matrix to the results
repository with a chosen label. After adding such commentator
to a classifier test machine via a ConfigBase, the confusion
matrix will be available to other machines (for example a
Repeater running a CV test, as a parent of the classification
tests and can easily calculate some statistical tests concerning
the confusion matrices, after all the child machines were
performed and possibly removed from memory. The same type
of commentator can be used to add class labels collected as
the first output of classifier test. It can be done because these
labels are also of theDataTable type.

On the basis of the confusion matrix, a few simple and pop-
ular factors can be put in the results repository. For example
thesensitivity (recall), precisionandspecificity. Naturally, they
all can be calculated and deposited by a single commentator.

Another useful commentator which can be defined for
classification test can be helpful for different statistical tests
like McNemar’s test. To perform such tests, the information
about the correctness of classification of all the instancesof
tested data is necessary (a vector of boolean values telling
whether subsequent classifier decisions were right or wrong).
Again, such information can be computed on the basis of the
information contained within the classification test machine
and its input data (the output labels must be compared one by
one to the original class labels provided by the input data).It
is very easy to implement this commentator, but its usefulness
for statistical analysis may be incredibly high.

The above examples show a small subset of the advantages
of results repository and commentators. The functionality
makes results manipulation independent of particular machines
and provides efficient and versatile access to results of adaptive
processes. The ideas are especially valuable for meta-learning,
which needs universal and flexible tools for every possible
aspect of computational intelligence.

IV. QUERY SYSTEM

The aim of the methodology of results repository and com-
mentators is to ensure that all the machines in the project are
properly described and ready for further analysis. Gathering
adequate results into appropriate collections is the task of the
query system.

The features of a functional query system include:
• efficient data acquisition from the hierarchy of machines,
• efficient grouping and filtering of the collected items,
• a possibility to determine pairs of corresponding results

(for paired t-test etc.),
• a possibility of performing different transformations of

the result collections,
• rich set of navigation commands within the results visual-

ization application, including easy machine identification
for a result from a collection, navigation from collections
to machines and back, easy data grouping and filtering,
etc.

The main idea of the query system is that the results
repository, which is distributed throughout the project, can be

searched according to a query resulting in a collection called
series, which then can be transformed in a wide spectrum
of ways (by special components, which can be added to the
system at any time to extend the functionality) providing new
results which can be further analyzed and visualized.

All the ideas ofseries, their transformationsandqueriesare
designed as abstract tools, adequate for any type of machines,
so that each new component of the system (a classifier, test
etc.) can be analyzed in the same way as the others, without
the necessity of writing any code implementing the analysis
functions.

h) Series:The collection of results obtained from results
repository as a result of a query is calledseries. In the system,
it is implemented as a general classSeries, which can collect
objects of any type. Typically it consists of a number of
information items, each of which, contains a number of values.
For example, each item of the series may describe a single
machine of the project with the value of its classification
accuracy, the number of CV fold in which the machine was
created etc. Thus each item is a collection of label–value pairs
in the same way as in the case of results repository. Such
representation naturally facilitates two main functions of the
series: grouping and filtering.

To divide a series into a group of series it is enough to
precise the label which is intended to determine to which
group the item should belong. For example we may divide
a series of classifiers’ accuracies into groups corresponding to
the corresponding number of CV fold.

Another feature of theSeries class is the possibility to filter
out the items satisfying some condition. To achieve this it is
enough to call the filtering routine which is parameterized by
label and the filter predicate: the returned series will contain
the items for which the value corresponding to the label
satisfies the predicate.

i) Series transformations:The series resulting from
queries may not correspond right away to what we need. Thus
we have introduced the concept ofseries transformations. In
general the aim of transformations is to convert a number of
input series into a single output series. Some of the most useful
transformations seem to be:

• a concatenation of series into one series (e.g. for group-
ing together the results of two classifiers into a single
collection),

• combining two (or more) series of equal length into a
single series of items containing the union of label–value
pairs from all the items at the same position in the input
series,

• calculating the differences of some values describing
items within two series (e.g. for the purpose of easy
testing of statistical hypotheses like paired t-test).

• calculating statistical tests (t-test, McNemar test, etc.) or
some properties (correlations, means, median etc.)

j) Queries: To obtain a series of results collected from
results repository, we need to run aquery. A query is defined
by:



• the root node, i.e. the node of the project (in fact a
machine capsule), which will be treated as the root of the
branch of the parent–child tree containing the candidate
machines for the query,

• the condition(-s)defining which machines of the branch
will actually be queried, (usually, and especially when
the whole branch is very large, we do not want to query
each node of the branch, but only the subset of machines
derived from a single configuration object, e.g. the kNN
classifiers run within a CV—such restriction is very
advantageous from the point of view of computational
complexity),

• the labelsto collect, which correspond to label-value pairs
in the results repository.

The result of running a query is the collection of items
corresponding to the machines occurring in the branch rooted
at the root node and satisfying thecondition. Each of the
items is a collection of label–value pairs extracted for the
collection of labels. For greater usefulness, the labels in the
third parameter of the query, are searched not only within
the part of results repository corresponding to the queried
machine, but also in the description of parent machines (we
will see the advantage of such a solution in the following
examples).

Consider the example of machine structure presented in
figure 2. It is a sketch of the hierarchy of machines obtained
with a repeater machine running twice 2-fold CV of two
classifiers (in parallel) kNN and SVM. Each labeled box
represents a single machine. There are also four groups of
classifiers and their tests encircled by unnamed boxes—they
are the scenarios defined to run in each fold of the CV. The
bullets in the left part of the boxes represent machine inputs,
and those at the right side—the outputs. As described before,
the repeater machine repeats a sequence of runs resulting from
the configuration of the distribution board. The two “Distr
Board” boxes correspond to the CV distribution board, which
splits its input dataset into 2 parts, preparing it for the CV.
The “Distr” boxes are distributors—they use the distribution
board output to exhibit proper training and test datasets as
their outputs. The repeater created a scenario defined at the
configuration stage for each of the distributors. The scenario
assumed creation of kNN and SVM machines with inputs
bound to proper CV training data and one classification test for
each of the two classifiers. The test machines’ inputs are bound
to corresponding classifiers and CV test data respectively.

After the structure of machines is created and the adaptive
processes finished, different queries may explore the results
repository. The most desirable query in such case is certainly
the query for the collection of CV test classification results
of each of the classifiers. To achieve this we may define the
query in the following way:

• the root nodeis the repeater node,
• the condition is being derived from the TestA or TestB

configuration respectively for kNN and SVM,
• the collection oflabelscontains just the “Accuracy” label.

Such query gives us a series of four accuracies calculated by
TestA or TestB machines.

If we like to calculate the average accuracies for each
repetition of the CV separately, we need the four values to
be separated into two groups of two. To do this, we need to
include the repetition number in the collection of labels. We
are allowed to include as many labels as we like, so lets add
the CV fold label too. Both theRepetition and theCV-fold
labels are assigned to the connection leading to the box with
classifiers (R1 or R2 and F1 or F2), so appropriate information
must be included, but it is too technical to describe it here.
As a result we obtain a series of four items consisting of the
values of accuracy, repetition number and CV fold number.
Now it is enough to call appropriate method of theSeries
class to group the data by theRepetition or by the CV-fold .
We can also filter out the results corresponding to the second
repetition of the CV, to the first CV fold etc.

To test the statistical significance of the differences between
the results of kNN and SVM with paired t-test (it does not
make much sense in the case of 2×2-fold CV, but the way
to do the test does not depend on the numbers of repetitions
or CV folds), we need to collect the results of all the kNN
machines and SVM machines separately (as described above)
and transform the two series into the series of accuracy differ-
ences with the proper transformation machine, then group the
results by the repetition number, calculate standard statistics
for each group and use the average and standard deviation in
calculations of the paired t-test. Since the standard statistics
and paired t-test are implemented as series transformations,
the whole process from the query result to the final t-test
decision is a sequence of different series transformations.
Such design of the query system provides universalism on an
unprecedented scale.

Another query may initiate the way to testing statistical
significance with the McNemar’s test. To run the test procedure
we need two series of correctness flags, as described in section
III. We need the commentator described there to generate such
series for each of the classification test machines. Then the
series of these series (obtained for different test machines) may
be concatenated with the proper transformation into one long
collection for kNN and one for SVM. Please notice that such
strategy preserves the correspondence of the results for kNN
and SVM at each position of the two resulting series. Thus the
McNemar test (also implemented as a series transformation)
can be applied to the two series yielding the final result.

Another interesting application of the query system is the
analysis of classification test results vs kNN machine param-
eters. For example, when kNN is configured to automatically
select its “k” parameter for given training dataset, we may be
interested to see the dependency between test accuracy and
the value of “k”. To do this we need a series containing items
describing both kNN and TestA machines. Thus we may run
two queries with the repeater machine capsule as the root node.
One of the queries will collect the values of “k” from the
kNN machines (the condition should specify that the queried
machine must derive from theConfigBase of kNN). The other



bDataset

CV Repeater

b bCV Distr Board

b bCV Distr Board

b b

b

Distr b

b

b bkNN

b bSVM

b

b

b

b

TestA

b

b

b

b

TestB

b b

b

Distr b

b

b bkNN

b bSVM

b

b

b

b

TestA

b

b

b

b

TestB

b b

b

Distr b

b

b bkNN

b bSVM

b

b

b

b

TestA

b

b

b

b

TestB

b b

b

Distr b

b

b bkNN

b bSVM

b

b

b

b

TestA

b

b

b

b

TestB

R1/F1

R1/F2

R2/F1

R2/F2

Fig. 2. A repeater machine performed twice a 2-fold cross-validation of two classifiers.

query will analogously collect the accuracies from the results
repository corresponding to the TestA machines. Provides the
two series (results of running the two queries) we can combine
the series with the adequate series transformation, and then
group the results by the values of “k”. After application of
standard statistics for each of the groups we can visualize
average accuracies and standard deviations for the “k” values
that were selected by the kNN machines.

The number of possible combinations of different commen-
tators, queries and series grouping, filtering and transforma-
tions is huge even with a small set of basic commentators
and transformations. Since the system is open in the sense
that any SDK user can add new commentators and series
transformations, the possibilities of results analysis are so rich,
that we can claim, they are restricted only by user invention.

The query system has been designed to facilitate advanced
meta-learning. It can be successfully used for miscellaneous,
sophisticated applications in data mining including construc-
tion of different types of classification committees and other
ensembles of machines, feature selection and extraction, and
many other fields.

Even the simplest tools facilitate high level analysis of vali-
dation test results within complicated hierarchies of machines.

To prevent the user from the necessity of defining all
details of the commentators, queries and series transformation
each time new complex machine configuration is run, the
system provides the mechanisms for addition of shortcuts
(or templates) which facilitate running similar sequencesof
operations after specification of the crucial parameters only.
For example, in the case of a standard CV test, the query
for calculation of basic statistics of classification accuracy is
added automatically and may run without any changes in the
parameters, although obviously, the parameters may be tuned
at any time according to user requirements.

V. SUMMARY

There is no meta-learning without meta-knowledge. This is
why we proposed new framework for information exchange

in our versatile and efficient data mining system. This frame-
work guaranties the exchange of any information, between
machines of any complexity. Universal mechanisms for results
repositories services, powerful system of information retrieval
from repositories and their manipulation, offer a multitude of
possibilities never met in known meta-learning or other data
mining systems. The results repositories may contain heteroge-
neous information. Moreover, the commentators may be used
to extract additional information from already implemented
machines to extend possibilities of further analysis. Using the
system of queries for results repositories, series and series
transformers, one can obtain answers for very broad range
of questions and successfully mine for meta-knowledge.

All these features cooperate with the rest of our system in
perfect harmony.

Acknowledgements:The research is supported by the Polish
Ministry of Science with a grant for years 2005–2007.

REFERENCES

[1] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier, “Meta-learning by
landmarking various learning algorithms,” inProceedings of the Sev-
enteenth International Conference on Machine Learning. Morgan
Kaufmann, June 2000, pp. 743–750.

[2] P. Brazdil, C. Soares, and J. P. da Costa, “Ranking learning algorithms:
Using IBL and meta-learning on accuracy and time results,”Machine
Learning, vol. 50, no. 3, pp. 251–277, 2003.

[3] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh,Feature extraction,
foundations and applications. Springer, 2006.

[4] N. Jankowski and K. Grąbczewski, “Heterogenous committees with
competence analysis,” inFifth International conference on Hybrid In-
telligent Systems, N. Nedjah, L. Mourelle, M. Vellasco, A. Abraham, and
M. Köppen, Eds. Brasil, Rio de Janeiro: IEEE, Computer Society, Nov.
2005, pp. 417–422.

[5] K. Grąbczewski and N. Jankowski, “Versatile and efficient meta-learning
architecture: Knowledge representation and management in computational
intelligence,” in IEEE Symposium Series on Computational Intelligence
(SSCI 2007), 2007, in print.


