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Abstract. Most of Computational Intelligence models (e.g. neural networks or
distance based methods) are designed to operate on continuous data and provide
no tools to adapt their parameters to data described by symbolic values. Two
new conversion methods which replace symbolic by continuous attributes are
presented and compared to two commonly known ones. The advantages of the
continuousification areillustrated with the results obtained with aneural network,
SVM and akNN systems for the converted data.

1 Introduction

The mgjority of the Computational Intelligence (Cl) systems are designed to deal with
continuous data. The adaptive processes of neural networksand most of similarity based
modelsoperatein R spaceto perform their approximation or distance cal cul ation tasks.
Building such models for data described by symboalic attributes requires an embedding
of the sets of symbolsinto some sets of real numbers. The simplest (and most commonly
used) mapping arbitrarily replaces subsequent symbolic values with subsequent natural
numbers. The order of the symbols is random and different randomizations may lead
to significantly different results obtained with Cl systems, so finding an appropriate
mapping from symbolsto real numbersis mostly advisable.

A simpleway to get rid of symbolic featuresisto replace each of them by anumber
of binary features.

Distance based systems may use some similarity measures which are designed for
symbolic datalike Value Difference Metric (VDM), Heterogeneous Euclidean-Overlap
Metric [13] or Minimum Risk Metric [Z].

A simple observation that instead of using VDM metric, one can replace each sym-
bolic value with anumber of probabilities and use Minkovski measure on the converted
data, leads to a conclusion that thanks to the data conversion any system designed for
continuous data may also take advantage of the VDM measure [[7].

Using another conditional probability yields very similar (but of different behavior
in applications) MDV continuousification scheme.

A conversion from symbolic to continuous data can also be done with the usage of
a separability criterion dedicated for decision tree systems.
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Cl systems augmented by some continuousifi cation methods become yet more pow-
erful tools, which take advantage of different methods of information extraction and of -
fer very good predictive accuracy (see section [B) which can be significantly better (see
sections[4 and B) than arbitrary coding of symboals.

2 Continuousification methods

Thearbitrary coding of symbolsmay lead to very different ordersand distances between
attribute values. As a consequence of that the placement of the training data in the
feature space is different for each mapping and this significantly affects the distances
between the datavectors. The goal of continuousificationisto find such arepresentation
of symbols in the set of real numbers, that makes the classification or approximation
problem easier.

NBF continuousification. Some of Cl systems convert symbolic features consisting
of n symbols with n binary features (NBF). For eachi = 1,...,n the i'th new feature
indicates whether the value of the original feature of given vector is thei’th symbol or
not. Such data conversion results in a dataset of dimensionality strongly dependent on
the numbers of symbols representing the features and does not depend on the number
of classes (in opposition to the VDM and MDV methods presented below).

VDM continuousification. In the space of symbolic features X = X1 x - -+, Xn, for the
set of classesC = {cy, ..., c«} the Value Difference Metric (VDM) for x,y € X x C and
aparameter q is defined as:

n k
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where P(cj|X; = z) isashortened form of P(C(u) = ¢j|ui =z Au€ X xC). Inthetests
presented in section Bl the probabilities P(cj|X = z) were estimated by [{x € T : x; =
z N C(X)=cj}| /{xe T :x =z}|, where T isthetraining data set.

Duch et al. [[7] presented the idea of mapping each of the x; symbolic values of a
vector x with k real numbers P(c1|X = Xi), ..., P(ck|X = X).

In two class problemsthe dimensionality of the space may remain unchanged, since
only one probability may be used without any change of the relative distances between
data vectors (using two probabilities instead of one would just double each distance).

MDV continuousification. A natural aternativeto VDM continuousification is to use
the other conditional probability binding the feature values with class labels. Replacing
P(cj|Xi = x) by P(X; = xi|cj) we obtain a mapping of an idea similar to VDM (hence
we call it MDV), but with several important differences.

The main dissimilarity is that in the case of VDM the feature values are ordered
according to how specific they are for given class and in the case of MDV according to
the frequency of given value among the vectors belonging to the class.



The nature of VDM causes that in two class tasks, only one of the probabilitiesis
necessary to preserve the whole information of two values. MDV'’s nature is different -
both probabilities are not so closely related —they are different sources of information,
however assuming some similarity one can use probabilities for one of the classes to
reduce the dimensionality of the resulting data.

SSV criterion and SSV based continuousification. The SSV criterion is one of the
most efficient among criteriaused for decision tree construction [18/9]. It's basic advan-
tage is that it can be applied to both continuous and discrete features. The split value
(or cut-off point) is defined differently for continuous and symbolic features. For con-
tinuous features it is a real number and for symbolic ones it is a subset of the set of
aternative values of the feature. The left side (LS) and right side (RS) of a split value s
of feature f for a given dataset D is defined as:

_ [ {xeD:f(x) <s}if fiscontinuous
LS(s.f,0) = {{xe D: f(x) ¢ s} otherwise )

RS(s, f,D) = D—LS(s, f,D)

where f(X) is the f’s feature value for the data vector x. The definition of the separa-
bility of a split valuesis:

SSV(S) = 2% Y |LS(S, f,D) N D¢l |[RS(s, f,D) N (D — D¢)|
3
— Yceccmin(|LS(s, f,D) N D¢l,|RS(s, f,D) ND¢|) ©
where C is the set of classes and D¢ is the set of data vectors from D which belong
to class c € C. A similar criterion has been used for design of neural networks by Bo-
browski et al. [3].

Decision trees are constructed recursively by searching for best splits (with the
largest SSV value) among all the splits for al the features. At each stage when the
best split is found and the subsets of data resulting from the split are not completely
pure (i.e. contain data belonging to more than one class) each of the subsets is being
analyzed in the same way as the whole data. The decision tree built thisway gives max-
imal possible accuracy (100% if there are no contradictory examplesin the data) which
usually means that the created model overfits the data. To remedy this a cross valida-
tion training is performed to find the optimal parameters for pruning the tree. Optimal
pruning produces a tree capable of good generalization of the patterns used in the tree
construction process.

SSV based continuousification. The SSV criterion can aso be a successful tool for
symbolic to real-valued feature mapping. It can be used to determine the order of the
leaves of the SSV-based decision tree and to project them to [0, 1] interval, as shownin
the following algorithm:

Algorithm 1 (SSV based continuousification)

Input: The classification space X, set of classesC, trainingset T C X x C, symbolic
feature F (of space X).

Output: Mapping F — R.



1. Build a decisiontree D using T’ = {(xg,c) € F xC: (x,c) € T} where Xg is the
value of the feature F for vector x.

2. For each node W of the tree D, such that W is not the root or a direct subnode of
the root, calculate SSV as the SSV criterion value for the split between W and
the sibling of it’s parent (the split of the set of vectors belonging to the two nodes,
to the two sets determined by the nodes).

3. For eachnodeW of thetree D, such that W is not theroot or aleaf (starting with the
root’s direct subnodes, through their subnodes to the parents of the leaves) order
the children W, of W:

— with decreasing (from left to right) values of SSVyy if W is the left child of it's
parent.

— with increasing (from left to right) values of SSVyy if W istheright child of it's
parent.

4. Create thelist L1,...,L, of all the leaves of the tree D with the order of visiting
themwith the depth first search (where the left child is visited before the right one).

5. Calculate the criterion values SSV; i1 for i = 1,...,n— 1 for the pairs of leaves
that are neighborsin thelist.

6. Foreachi =1,... nassigntothel; leavethereal value

>1LSSVj
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7. The output is the mapping which maps each possible value f of the F feature to
the real number calculated in the preceding step for the leave which contains the
vectorswith f value of the F feature.

The agorithm takes advantage of the fact, that SSV tree usualy puts each symbolic
value of the feature into a separate leave. Two different values may end up in asingle
leave only if all the vectors with any of that values belong to the same class — in such
a case the two values (from the classification point of view) need not be distinguished
and the above algorithm maps them to the same real value.

3 Adaptive modelstested

We have tested the algorithms with three different kinds of adaptive models: a neural
network (FSM), an SVM and aminimal distance system (KNN).

FSM neural network. Feature Space Mapping (FSM) is aneural network system based
on modelling probability distribution of theinput/output datavectors[[6/1]. Thelearning
agorithm facilitates growing and shrinking of the network structure, which makes the
method flexible and applicable to classification problems of miscellaneous domains.

SVYM method. The SVM agorithm we have used is the Platt’s Sequential Minimal
Optimization (SMO) [[12] augmented by theideas presented in [[10]. Such version (with
Gaussian kernels) yields very fast and accurate solutions.



kNN method. The k Nearest Neighbours (kNN) agorithm we used is a method with
automated selection of the k parameter. For given training dataset the k is determined
by means of cross validation training performed inside the training set (the winner k is
the one that gives the smallest average validation error). The distances were cal culated
with the Euclidean metric.

4 Statistical significance test

When comparing the performances of different classification systemsit isimportant not
only to see the average accuracies, but to answer the question of the probability, that the
average accuracy of anumber of tests for one system will be higher than the average for
the other. Assuming normal distribution of the accuracies, we estimate the probability
with Student’st test [4l5].

In our experiments we repeated a cross validation (CV) test 10 times. Each com-
peting system was run for the same data sample, so we are justified to estimate the
statistical significance with pairedt test with 10 degrees of freedom. The estimation of
the variance of the CV mean is done on the basis of the 10 results.

5 Results

There is no point in continuousification of binary features, so the datasets containing
continuous and binary features only are not eligible for the test. Also the results ob-
tained for a dataset containing just one or two symbolic features do not alow for any
conclusions.

We have tested the continuousification algorithms on three datasets from the UCI
repository [[11], defined in spaces consisting of symbolic features only: Promoters, Soy-
bean and DNA. The tables[Tl and[2 present the results of the 10 repetitions of 10 fold CV
for each of the tested models, and table[3 shows average results for 10 training and test
runs (the datais divided into training and test parts). The first row of each table shows
the result obtained on raw data (arbitrary coding of symbols) while the other rows show
the results with continuousification noted in thefirst column. A “k” beforethe method’s
name means that one-against-rest technique was used, i.e. the data was classified by a
committee of k experts (where k is the number of classes) — each specializing in the
recognition of one of the classes against al the others. For each continuousifier the
columns Py, P, ... show the probabilities (calculated with thet test) that it's averaged
test accuracy is higher then that of method 1, 2, etc.

6 Conclusions

The presented results clearly show that commonly used continuousification methods do
not perform very well. Whether the results are good is the matter of luck. The VDM
method aswell as the new MDV and SSV methods are significantly more reliable. The



FSM Acc. |Stddev.|| PL | Po | P3 | P4 | Ps
1: None| 0.673 | 0.034 || — |0.000|0.000]0.000| 0.000
2:SSV (0.878 | 0.029 [|1.000[ — |0.175/0.308| 0.540
3:NBF [ 0.912 | 0.013 [|1.000{0.825] — |0.734| 0.968,
4:VDM| 0.893 | 0.024 |/1.000|0.692/0.266 — |0.706
5:MDV|0.874| 0.017 {|1.000/0.460/0.032/0.294 —

SVM | Acc. |Std.dev.| P | Po | P3 | P4 | Ps
1: None| 0.478 | 0.014 || — |0.000|0.000; 0.000| 0.000
2:SSV (0.903| 0.015 [|1.000[ — |1.000|0.091| 0.045
3:NBF | 0.695| 0.040 {|1.000{0.000f — |0.000| 0.000
4:VDM| 0.930 | 0.016 ||1.000{0.909/1.0000 — |0.376
5:MDV|0.936 | 0.006 {|1.000/0.955|1.0000.624 —

kNN Acc. [(Std.dev. Py P, Ps Py Ps
1: None| 0.725 | 0.026 || — |0.001{0.0690.000| 0.000
2: SSV | 0.860 | 0.020 {|0.999] — [0.992|0.008| 0.014
3:NBF | 0.771 | 0.022 {/0.931]/0.008/ — |0.000| 0.000
4:VDM| 0.929 | 0.019 |{1.000/0.992/1.0000 — |0.587
5:MDV|0.924 | 0.011 ||1.000|0.986({1.0000.413 —

Table 1. Results for Promoters (106 instances, 57 attributes, 2 classes).

FSM Acc. |Stddev.|| P | Po | P3| P4 | Ps
1: None| 0.868 | 0.010 || — |0.539/0.0120.434/0.261]
2: SSV | 0.867| 0.007 ||0.461] — |0.000]0.407|0.198
3:NBF | 0.894 | 0.006 ||0.988|1.000| — |0.9870.926
4:VDM| 0.870| 0.010 |/0.566|0.593)0.013] — [0.320
5:MDV| 0.877| 0.013 ||0.739]0.802/0.074/0.680| —

SVM Acc. |Std.dev. P]_ P2 P3 P4 P5 P6 P7

1: None |0.664 | 0.007 || — |0.000{0.000/0.000f0.845|1.000 0.000
2:SSvV | 0.762 | 0.007 (|1.000, — |0.001/0.999|1.000|1.000 0.001
3:NBF |0.787 | 0.007 ||1.000/0.999 — {1.000{1.000|1.000| 0.134
4:VDM | 0.729 | 0.007 |{1.000{0.001,0.000 1.000) 1.000, 0.000

5:MDV | 0.656 | 0.005 {|0.155/0.000|0.000/0.000, — {1.000 0.000
6: k VDM| 0.487 | 0.007 {|0.000/0.000|0.000/0.000/0.0000 — |0.000
7:k MDV| 0.796 | 0.005 (|1.000|0.999|0.866/1.000/1.0001.000 —

kNN Acc. [Std.dev. Py P, P3 Py Ps Ps Py

1: None |0.831| 0.006 || — [0.000|0.000|0.000j 0.000( 0.000 0.000
2: SSV 0.894 | 0.005 |{1.000 — |0.039(0.003/0.011/0.953|0.517
3:NBF | 0.909| 0.005 {|1.000{0.961] — |0.059(0.415/0.9920.942,

4: VDM |0.923| 0.007 |{1.000{0.997/0.941] — |0.938 0.999 0.999
5:MDV |0.910 | 0.004 |/1.000/0.989/0.585/0.062] — |0.991{0.958
6: k VDM| 0.878 | 0.008 (|1.000/0.047|0.0080.001/0.009 — |0.086

7:k MDV| 0.894 | 0.008 (|1.000|0.4830.0580.001/0.042/0.914 —

Table 2. Results for Soybean (290 instances, 35 attributes, 15 classes).



FSM Acc. (Std.dev. Py P, P3 Py Ps Ps Py

1: None |0.906| 0.007 || — [0.001/0.000|0.000j 0.000( 0.00Q 0.000
2: SSV 0.936 | 0.004 |{0.999] — |0.058{0.007|0.060| 0.005|0.099
3:NBF |0.948| 0.005 {|1.000{0.942 — |0.620/0.715(0.238 0.500
4:VDM | 0.946 | 0.002 |/1.000{0.993/0.380) — |0.699 0.052 0.405
5:MDV |0.944| 0.003 {|1.000{0.940/0.285/0.301] — [0.032 0.282
6: k VDM| 0.953 | 0.003 |/1.000/0.995(0.7620.948/0.968 — |0.721
7: k MDV| 0.948 | 0.007 |{1.000{0.901/0.500(0.595|0.718 0.279 —

SVM Acc. (Std.dev. Py P, P3 Py Ps Ps Py

1: None |0.611| 0.000 {| — [0.000|0.000|0.000j 0.000( 0.00Q 0.000
2: SSV 0.927 | 0.000 |{1.000 — |1.000{0.000/0.000|0.000| 1.000
3:NBF |0.633| 0.000 {|1.000{0.000] — |0.000j0.000{0.000 0.000
4: VDM |0.948 | 0.000 |/1.000|{1.000{1.0000 — |1.000| 1.000y 1.000
5:MDV |0.947| 0.000 {|1.000{1.000/1.000/0.000 — {1.00Q 1.000
6: k VDM| 0.935 | 0.000 ||1.000|1.000{1.000/ 0.000{0.000 — |1.000
7:k MDV| 0.895 | 0.000 ||{1.000(0.000{1.000(0.000 0.000 0.000 —

kNN Acc. [Std.dev. Py P, P3 Py Ps Ps Py

1: None |0.676| 0.001 || — [0.000|0.000|0.000j 0.000( 0.000 0.000
2: SSV 0.876 | 0.003 |{1.000 — |1.000{0.000)0.000|0.000| 0.000
3:NBF |0.827| 0.004 {|1.000{0.000] — |0.000j0.000{0.000 0.000
4:VDM |0.949 | 0.001 |/1.000|1.000{1.0000 — |0.883 0.000 0.889
5:MDV |0.947| 0.003 {|1.000{1.000/1.000/0.117] — {0.001]0.822
6: k VDM| 0.958 | 0.001 |/1.000|1.000(1.000/1.000{0.999 — |0.991
7:k MDV| 0.941 | 0.006 |{1.000(1.000{1.000{0.111{0.178 0.009 —

Table 3. Results for DNA (2000 instances for training, 1186 for test, 60 attributes, 3
classes).

need for appropriate data preparation confirms, that combinations of different kinds of
information retrieval (hybrid methods) are necessary to obtain good results.

All the presented algorithms are fast, however NBF, VDM and MDV may produce
high dimensional data, which may significantly slow down the learning of the final
models. In the case of Soybean data consisting of 35 features NBF produced 97 new
features and both VDM and MDV 525 features. For DNA data (60 features) NBF gave
240 features and both VDM and MDV 180 features.

Instead of producing large spaces with VDM or MDV, sometimesit isreasonableto
use the one-against-rest technique - although it requiresthe final classifier to be trained
several times, it may be faster than training a single final model — it depends on how
efficient the model isin high dimensional spaces.

The SSV method does not enlarge the dataset by features multiplication, regardless
the number of classes and feature values. Hence it is very efficient for complex data.
Although some other continuousification methods may give higher accuracies, the dif-
ference is usually small in comparison to the difference between SSV and an arbitrary
symbols coding.



In general, if f isthe number of features, k — the number of classes and v is the

expected number of values per feature, then the dimensionality of the target space and
the number of models that must be trained are presented in the following table:

NBF | VDM/MDV | k-VDM/k-MDV | SSV
Dim vf kf f f
Models| 1 1 k 1

It must be pointed out, that the VDM, MDV and SSV methods use the information

about the classes of the vectors, so in the case of the tests like cross validation it should
not be used at the stage of data preprocessing. It must be run separately for each fold of
the test. Used at the preprocessing stage they yield overoptimistic results.
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