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The story

Trying to address a few very important questions.

1.

How can we understand mind-body relations?
Questions < Levels of description, neurocognitve phenomics.

Neuropsychiatry? Neurodynamics and ASD-ADHD, RDoC.

General behavior of people?
Associations, creativity, memory distortions, conspiracy
theories, polarization of opinions, learning new domains.

How can we understand developmental processes?
Auditory perception, working memory, therapeutic games,
dyscalculia, sensory imagery.

How to use neurodynamics, connectomics, neuroimaging,
brain fingerprinting in practical applications.



Most important 21 century technologies

Cognitive

Bio

Neuro
Nano

Info

Ultimate technology: NeuroCognitive Informatics in Nano-hardware.
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Induction

Duch W, Mandziuk J (Eds.), Challenges for Computational Intelligence.

Springer "Studies in Computational Intelligence" Series, Vol. 63, 2007.
Jankowski N, Duch W, Gragbczewski K, Meta-learning in Computational Intelligence

. Springer 2011.



https://www.springer.com/engineering/book/978-3-540-71983-0
https://www.springer.com/gp/book/9783540719830
https://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-20979-6

Center of Modern

Interdisciplinary Technologles

Why am |
interested in this?

Bio + Neuro +
Cog Sci + Physics =>

NeuroCognitive Lab.

Other labs: molecular
biology, chemical
analytics, nanotech
and electronics.
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Main theme: maximizing human potential.

Goal: understanding brain-mind relations, with a lot of help from computational
intelligence; pushing the limits of brain plasticity.

Big challenge! Funding: national/EU grants.



A group of neurofanatics
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Geometric model of mind

Objective <> Subjective.
Brain < Mind.

Neurodynamics describes state of the brain
activation measured using EEG, MEG, NIRS-
OT, PET, fMRI or other techniques.

Mind states=f(Brain states)

How to represent mind state?

In the space based on dimensions that
have subjective interpretation: intentions,
emotions, qualia.

Mind state and brain state trajectory
should then be linked together by some
transformations. Intentions are uncovered
by the Brain-Computer Interfaces.

Lack of neurophenomenology.



Neurocognitive informatics

Use inspirations from the brain, derive practical algorithms!

My own attempts - see my webpage, Google: W. Duch

1. Mind as a shadow of neurodynamics: geometrical model of mind
processes, psychological spaces providing inner perspective as an
approximation to neurodynamics.

2. Intuition: learning from partial observations, solving problems without
explicit reasoning (and combinatorial complexity) in an intuitive way.

Neurocognitive linguistics: how to find neural pathways in the brain.

4. Creativity in limited domains + word games, good fields for testing.

Duch W, Intuition, Insight, Imagination and Creativity,
IEEE Computational Intelligence Magazine 2(3), 2007, pp. 40-52



Phenomics

Phenomics is the branch of science concerned

with identification and description of measurable

physical, biochemical and psychological traits of organisms.
Genom, proteom, interactom, exposome, virusom , connectom ...
omics.org has a list of over 400 various ...omics |

Human Genome Project, since 1990.
Human Epigenome Project, since 2003. Behaviormetrika
Human Connectome Project, since 20009.

Developing Human Connectome Project, UK 2013 + many others.

Behavior, personality, cognitive abilities <= phenotypes at all levels.
Still many white spots on maps of various phenomes.

Can neurocognitive phenomics be developed to understand general behavior
of people? Where should we start?



From Genes to Neurons

Genes contain
instructions
for making
proteins
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Genes => Proteins => receptors, ion channels, synapses
=> neuron properties, networks, neurodynamics
=> cognitive phenotypes, abnormal behavior, syndromes.



Genes => Proteins => receptors, ion channels, synapses
=> neuron properties, networks
=> neurodynamics => cognitive phenotypes, abnormal behavior!



Neuropsychiatric
Phenomics in 6 Levels

Consortium for Neuropsychiatric
Phenomics (CNP)/NIMH RoDC approach:

Research Domain Criteria (RoDC)
analyzes 5 large brain systems —
negative/positive valence systems,
arousal, cognitive, affective systems —
through interaction of Genes, Molecules,
Cells, Circuits, Physiology, Behavior, Self-
Report, and Research Paradigms.

From genes to cognitive subsystems and
behavior, neurons and networks are right
in the middle of this hierarchy.

=> Neurodynamics is the key!

DMS

DM5 1 item
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YRDoC

< " Research Domain Criteria Initiative
RDoC Matrix for Negative Valence Systems

5 Psychological Constructs/Subconstructs:

Acute Threat ("Fear"); Potential Threat ("Anxiety"); Sustained Threat;
Loss, Frustrative Nonreward

Each characterized by 8 aspects at different phenomic levels:

Mole-
cules

Physio- Beha- Self- Para-

Cells Circuits logy vior Report  digms

Genes

Ex: Sustained Threat

Physiology: Dysregulated HPA axis | Error-related negativity

Behavior: Anhedonia/decreased appetitive behavior | Anxious Arousal
Attentional bias to threat | Avoidance | Decreased libido | Helplessness
behavior | Increased conflict detection | Increased perseverative behavior |
Memory retrieval deficits | Punishment sensitivity



Neurocognitive Phenomics

Phenotypes may be described at many _

Learning styles,
levels. Ex. from top down: strategies
learning styles - education,
psychiatry & psychology,

Memory types,
neurophysiology, connectomes, attention ...

microcircuits, neural networks,

Learning styles

Cognition

Sensory & motor
neurobiology - organs, tissues, cells, activity, N-back

biophysics/chemistry & bioinformatics.

. . Specialized brain
Neurocognitive phenomics is even areas, minicolumns
greater challenge than
neuropsychiatric phenomics. Many types of Synapses, neurons

.. meRheelrs & glia cells
Effects are more subtle but this is
the only way to understand fully Neurotransmitter
human/animal behavior. s & modulators Signaling pathways
Data driven science! _ .
Genes & proteins, Genes, proteins,
brain bricks epigenetics

Tasks, reactions

Neural networks




Neurophenomics Research Strategy

The Consortium for Neuropsychiatric Phenomics (2008):
bridge all levels, one at a time, from environment to syndromes.

Our strategy: identify biophysical parameters of neurons
required for normal neural network functions and leading to
abnormal cognitive phenotypes, symptoms and syndromes.

slnnnllnan

* Start from simple neurons and networks, increase complexity. SSTSE

* Create models of cognitive function that may reflect some of the
symptoms of the disease, for example problems with attention.

* Test and calibrate the stability of these models in a normal mode.
* Determine model parameter ranges that lead to similar symptomes.

* Relate these parameters to the biophysical properties of neurons.

Result: mental events at the network level are described in the language of
neurodynamics and related to low-level neural properties.
Example: relation of ASD/ADHD symptoms to neural accommodation.



Human connectome and MRI/fMRI

Node definition

Structural connectivity Functional connectivity
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calculation

BOLD signal

Graph theory
Binary matrix
Correlation
matrix

Clustering

Bullmore & Sporns (2009)



Genes=>Proteins

~5x1013=50T cells, 2m DNA/cell
~10¥*m=100 T km = 666 au!

~10%=1P synapses;
>1M new synapses/sec
~100G neuronow (10'?)

>550.000 structures in Swiss-
proteome database

~60.000 protein families
~20.000 genes
>100.000 proteins/cells

Organism is a process!
lifetime 4 days to >100 years.
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HANDROOK OF
ION CHANNELS

Voltage-gated ion channels

More than 140 members. >
= Conductance varies by \{ |
100 fold. Kap \ | "
“ I, ; TRPML 5
= Variable gating: voltage, ' ' -4
2" messengers, stimuli g
(pH, heat, tension, etc.) ; mv
x K 2 Ca, 2 Na, . --!rﬁé-"

TRPM
= Bacterial ancestor likely ikl
similar to KcsA channel. .. — 0.05 substitutions/site



Computational Models: Neurodynamics

Models at various level of detail.

*  Minimal model includes neurons with
3 types of ion channels.

Models of attention:

* Posner spatial attention;

* attention shift between visual objects.

Models of word associations:
* seguence of spontaneous thoughts.
Models of motor control.

Critical: control of the increase in
intracellular calcium, which builds up
slowly as a function of activation.
Initial focus on the leak channels,
2-pore K*, looking for genes/proteins.

Inhibitory
Synaptic

= Cys-logop
ABCC  (gaBA, nACh, glycine, 5HT)

ionotropic glutamate
ENaCl/ASICIPZX

voltage-gated cation

Chloride




Model of reading & dyslexia

Emergent neural simulator:

Aisa, B., Mingus, B., and O'Reilly, R.
The emergent neural modeling system.

Neural Networks,
21, 1045-1212, 2008.

3-layer model of reading:

1 ck Fd it
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orthography, phonology, semantics, or i ) 1359
distribution of activity over {00 HE Mﬂt N
140 microfeatures defining concepts. 45 R H3 US WA NN We)
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Hidden layers in between.

~ i A = —=
Orhography timQE—H'd Pﬁs?;..Dgfﬂgy

Learning: mapping one of the 3 layers to the other two.
Fluctuations around final configuration = attractors representing concepts.

How to see properties of their basins, their relations?
Model in Genesis: more detailed neuron description.



Fecurrence Plot
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,Gain”: trajectory of semantic activations quickly changes to a new
synchronized activity, periodically returns to the first basin of attraction.



Fuzzy Symbolic Dynamics (FSD)

Complementing information in RPs:

RP plots S(t,t,) values as a matrix; FSD

1. Standardize data.
2. Find cluster centers (e.g. by k-means algorithm): p, 14, ...

3. Use non-linear mapping to reduce dimensionality:

Vet , 2, )= exp(—(x(@t)—uk )T Z;l (X(t)_uk))

Localized membership functions y,(t;W):

sharp indicator functions => symbolic dynamics; x(f) => strings of symbols;

soft membership functions => fuzzy symbolic dynamics, dimensionality
reduction Y(t)=(y,(t; W), y,(t; W)) => visualization of high-dim data.

We may then see visualization of trajectory in some basin of attraction.
Such visualizations are simply referred to as “attractors”.



Fuzzy Symbolic Dynamics (FSD)

wation in Semantics layer [dyslex. proj]

Complementing information in RPs:

RP plots S(t,t,) values as a matrix; FSD

1. Standardize data.
2. Find cluster centers (e.g. by k-means algt

3. Use non-linear mapping to reduce dime

VG, 2, ) = eXp(—(X(Eé)—

Localized membership functions y,(t;W):

sharp indicator functions => symbolic dynamics; x(f) => strings of symbols;

soft membership functions => fuzzy symbolic dynamics, dimensionality
reduction Y(t)=(y,(t; W), y,(t; W)) => visualization of high-dim data.

We may then see visualization of trajectory in some basin of attraction.
Such visualizations are simply referred to as “attractors”.



Fast transitions

Artivalan in Semsrlas layer [dyeles.prs]
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Attention is focused only for a brief time and than moved to the next attractor
basin, some basins are visited for such a short time that no action may follow,

no chance for other neuronal groups to synchronize. This corresponds to the
feeling of confusion, not being conscious of fleeting thoughts.



Autism-Normal-ADHD

b_inc_dt=0.005 b_inc_dt=0.01 b_inc_dt=0.02

Fuzzy Symbalic Dynamics Activation in Semantics layer [dyslex.praj]

Fuzzy Symbolic Dynamics
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Long trajectories

Recurrence Plot

200 400 B00

Recurrence plots and MDS visualization in 40-words microdomain,
starting with the word “flag”.
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Prototype Distance Plot

800 1[]00 1200 1400 1600 1800 2000
iterations

PDP for transitions starting from ,flag”




Graph of transitions
between attractors
after 10 runs.

Why these particular
transitions?

Connected attractors
share some micro-
features, some circuits
(units) are deactivated,
but visualization using
RP or FSD does not
show such details.

The landscape of
available attractors is
also dynamic!
Transition probabilities
change, dimensions
(features) are rescaled.
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MDS word mapping

MDS representation of all
40 words, showing
similarities of their 140
dimensional vectors.

Attractors are in some
cases far from words.

Transition
Flag => rope =>flea ...

Can we make semantic
map of concepts in real
brains? See trajectories
of thought?

Prototypes vs Attractors (flag)
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Brain modules and cognltlve processes

Simple and more difficult
tasks, requiring the whole-
brain network reorganization.

Left: 1-back
Right: 2-
back

Average
over 35

participants.

Left and
midline
sections.

Fronto-Parietal (FP)

I Memory (MEM)
Somato-Motor (SOM)

B Dcfault Mode (DM)
B ventral Attention (vA)
B salience (sa)

B cingulo-Opericular (CO)
] Auditory (AU)

B subcortical (SUB)

B Dorsal Attention (DA)

Visual (VIS)
Other

K. Finc et al (HBM, in rev, with
World Hearing Center, MPI for
Human Development).

1l-back Q=0.29

2-back Q=0.20



Brain modules and cognitive processes

Simple and more difficult tasks, requiring
the whole-brain network reorganization.

Left: 1-back Top: connector hubs
Right: 2-backBottom: local hubs

Average over 35 participants.

Dynamical change of the landscape of
attractors? Less local, more global binding.

K. Finc et al (HBM, in rev).

[ ] Fronto-Parietal (FP)

B DcfauitMode (oM) [l Cinguio-Opericuiar (co) [l Dorsal Attention (DA)
B Ventral Attention (vA) [] Auditory (AU) [ visual (vis)
Salience (SA) Subcortical (SUB) | | other

[ Mermory (MEM)
] Somato-Motor (SOM)




[Semantic Space]
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Activation of concepts in our minds leads to speciﬁc brain structure activity;
each structure is involved in interpretation of many concepts (Gallant lab).



Activation of specific concept (mental state) leads to activation of specific brain
areas and networks. Each such activation pattern contributes to sematic
interpretation of many concepts through global brain activity.



Toggle this box
I Toggle intro msg
+ Next Dataset
Prev Dataset
Lft mouse Rotate

hid rnaica Dan

This activation is sparse and may be better observed by looking
at the flattened cortex: http://gallantlab.org/brainviewer/huthetal2012/



http://gallantlab.org/brainviewer/huthetal2012/
http://gallantlab.org/brainviewer/huthetal2012/

[ i
| ...[Mrs. Birch] went through the front door into
|_the kitchemn.

|_Mir. Birch came in
1

Nicole Speer et al. [and. atera tiendly arestng,
Reading Stories Activates o
Neural Representations of
Visual and Motor
Experiences.

Psychological Science 2009;
20(8): 989-999.

Meaning: always slightly
different, depending on the
context, but still may be
clusterized into relatively
samll number of distinct
meanings.
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Source localization maps
brain activity to
attractor dynamics.

Potential (uV)
W] F=y

o

( l. Stimulus onset

Problem: these sources
pop up and vanish in
different places.

i
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Fig. from:

Makeig, Onton, 2009
ERP Features and
EEG Dynamics:

An ICA Perspective.

o

Brain fingerprinting:
discover in EEG specific
patterns for attractor
dynamics = subnetwork
activation.
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Origin of the learning styles

Connectomes develops before birth and in the first years of life.

Achieving harmonious development is very difficult and depends on low-level
(genetic, epigenetic, signaling pathways) processes, but may be influenced by
experience and learning.

* Excess of low-level (sensory) processes S<&S.

* Poor C<C neural connections and synchronization, frontal <> parietal
necessary for abstract thinking, weak functional connections prefrontal
lobe <~ other areas.

* Patterns of activation in the brain differ depending on whether the brain is
doing social or nonsocial tasks.

* “Default brain network” involves a large-scale brain network (cingulate
cortex, mPFC, lateral PC), shows low activity for goal-related actions;
strong activity in social and emotional processing, mindwandering,
daydreaming.



Children Adults

mPF; (anterior) e a r n i n g Styl e S

I".I mPFC (ventral)

T ' .. and in the first years of life.

1
sup. frontal
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g el ANays) processes, but may be influenced by

1
- |
sarahippocampal /
1
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| d synchronization, frontal <> parietal
lat. parietal eak functional connections prefrontal

retrosplenial | differ depending on whether the brain is

s . - a large-scale brain network (cingulate
cortex, mPFC, lateral PC), shows low activity for goal-related actions;
strong activity in social and emotional processing, mindwandering,
daydreaming.



Learning styles

. Concrete
Kolb's Experience

learning Feeling
styles

wngs

Iy iF e

AL

Reflective
Observation
Watching

Active
Experimentation
Daoing

Perception Continuum

Fow we think a

Abstract
Conceptualisation
Thinking

© concept david kolb, adaptation and design alan chapman 2005-06, based on Kolb's learning styles, 1984

David Kolb, Experiential learning: Experience as the source of learning and
development (1984), and Learning Styles Inventory.




Connectome and learning styles

Simple connectome models may

help to connect and improve A | | |
learning classification of the styles. C=Central
S, Sensory level, occipital, STS, and ‘ | - ,

somatosensory cortex;
C, central associative level,

abstract concepts that have m

no sensory components, . |
mostly parietal, temporal and

prefrontal lobes.

M, motor cortex, motor imagery & physical action.
Frontal cortex, basal ganglia.

Even without emotion and reward system predominance of activity within or
between these areas explains many learning phenomena.



Learning styles D1

Kolb passive-active dimension,
observation — experimentation: M I\/Iotor C Central

motor-central processes M<C,

sensory-motor processes M<>S.

Autistic people: processes at M
the motor level MM, |

leads tc? repetitive movements,

echolalia.

The Learning Styles Inventory is a tool to determine learning style.
The tool divides people into 4 types of learners:

* divergers (concrete, reflective),
* assimilators (abstract, reflective),
* convergers (abstract, active),

* accommodators (concrete, active).



Learning styles D2
Kolb perception-abstraction: | » ' »
coupling within sensory S<S areas, vs.

coupling within central C<>C areas.
Strong C=>S leads to vivid imagery /

dominated by sensory experience.

Autism: vivid detailed imagery,
no generalization.

Attention = synchronization of neurons, limited to S, perception S&S strongly
binds attention => no chance for normal development.

Asperger syndrome strong C=>S activates sensory cortices preventing
understanding of metaphoric language.

If central C<~>C processes dominate, no vivid imagery but efficient abstract
thinking is expected - mathematicians, logicians, theoretical physicist,
theologians and philosophers ideas.




4 styles and more

Assimilators think and watch: prone to abstract thinking, reflective observation,
inductive reasoning due to strong connections S=>C and within C<~>C, weak

connections from S=>M and C=>M.

Convergers combine abstract conceptualization, active experimentation, using
deductive reasoning in problem solving.

Strong C<>C and C=>M flow of activity.

Divergers focus on concrete experience S&S, strong C<S connections and C&C
activity facilitating reflective observation, strong imagery, novel ideas but weak
motor activity.

Accommodators have balanced sensory, motor and central processes and thus
combine concrete experience with active experimentation supported by central
processes S CH M.

The idea of learning styles is criticized because there was no theoretical
framework behind it, but objective tests of the learning styles may be based on
brain activity.



Creativity with words

The simplest testable model of creativity (~ Campbell BVSR):
* create interesting novel words that capture some features of products;
* understand new words that cannot be found in the dictionary.

Model inspired by the putative brain processes when new words are being
invented starting from some keywords priming auditory cortex.

Phonemes (allophones) are resonances, ordered activation of phonemes will
activate both known words as well as their combinations; context + inhibition in
the winner-takes-most leaves only a few candidate words.

Creativity = network+imagination (fluctuations)+filtering (competition)

Imagination: chains of phonemes activate both word and non-word
representations, depending on the strength of the synaptic connections. Filtering:
based on associations, emotions, phonological/semantic density.

discoverity = {disc, disco, discover, verity} (discovery, creativity, verity)
digventure ={dig, digital, venture, adventure} new!
Visual: Google Deep Dream hallucinations — but video streams not natural.



The simple

create i ucts;

* underst

Model ins » being
invented

Phonemes bmes will
activate bq inhibition in
the winne

Creativit petition)
Imaginati

representa ons. Filtering:
based on ¢

discoverity = {disc, disco, discover, verity} (discovery, creativity, verity)
digventure ={dig, digital, venture, adventure} new!
Visual: Google Deep Dream hallucinations — but video streams not natural.



How to become an expert?

Textbook knowledge in medicine: detailed description of all possibilities.

Effect: neural activation flows everywhere and correct diagnosis is impossible.
Correlations between observations forming prototypes are not firmly established.
Expert has only correct, “intuitive” associations; deep attractors = .

Example: 3 diseases, vector NLP on clinical case description, MDS visualization.

1) System that has been trained on textbook knowledge: weak attractors.
2) Same system that has learned later on real cases: deeper attr, still connected.
3) Same system that has learned only on description of real cases: deep attr.

ns =
Dimension_1 Dimension_1




CONSPIRACY
THEORY

Conspiracy in the brain AEERT

Slow and rapid scenarios are possible, here only rapid presented:

* Emotional situations => neurotransmitters =>
neuroplasticity => fast learning, must be important.

* Fast learning => high probability of wrong interpretation.

* Traumatic experiences, hopelessness, decrease brain plasticity and leave
only strongest association — strongly connected pathways.

* Conspiracy theories form around such associations,
“frozen” pathways lead to brain activations forming
strong attractors, distorting rational thinking.

* Such strong associations save brain energy and cannot be
changed by rational arguments, that influence weaker associations only.

* This explanation becomes so obviously obvious ...

Model: concept vectors derived from a corpus + MDS or Growing Neural Gas
visualization (Martinetz & Schulten, 1991).
Social cognitive neuroscience should go more in this direction.
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Internalization of environment

Episodes are remembered and serve as reference points, if observations are
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Extreme plasticity

Brain plasticity (learning) is increased if long, Slow strong emotions are
involved. Followed by depressive mood it leads to severe distortions, false
associations, simplistic understanding.

Network Model: |Growing Neural Gas (Fritzke)




Conspiracy views

llluminati, masons, Jews, UFOs, or twisted view of the world leaves big holes
and admits simple explanations that save mental energy, creating ,sinks” that
attract many unrelated episodes.




Memoids ...

Totally distorted world view,
mental processes are reduced
to a memplex ...

Ready to sacrifice oneself for a
great idea.



SOM on real newspaper data

Different groups of
people read different
newspapers, are
exposed to different
media and social L
networks, resulting in faornle
different network of
concepts and sharp

polarization of opinions.

Big sinks attract
neurodynamics
manifesting in strong
automatic associations
with core concepts.

Different associative networks make communication almost impossible.
Work in progress (with J. Szymanski et al.)



BabylLab, Neurocognitive Laboratory
CMIT NCU
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Development of speech perception in infants, discrimination of
phonemes, development of auditory working memory — the key to
unfold human potential, boost motivation and foundation for learning.
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Brains of newborns
react to ba/ga/da
syllables in the

3-5 day of life in a way
that allows for
prediction of problems
with learning to read
years later.

(D. Molfesse, 2000).

Can we change it by
training infants?

We hope so, this may
be verified using ERPs.

Infant’s EEG is full of
artifacts, big variance,
longer phonemes give
complex ERPs.

Newborn ERPs
in the at-risk group

Boston Naming Test
5.5y-0.311*
Audio-phonemic

. ] - “'—_ II
associalions 5.5 T
y -0.451*
Word identification
6.5 y -0.308*

Writing letters 6.5 y -(0L.336% T DAl

"

— [gal

Reading 6.5 y -0.329%

.r',...

Naming 1% phoneme

-.,‘_“ 6.5 y -[].341$

Word identification
6.5 y -0.415%%




Infants, syllables

Brains of newborns
react to ba/ga/da

syllables in the Newborn ERPs
3-5 day of life in a way in the at-risk group
that a”OWS for Boston Naming Test
prediction of problems 5.5y-0311%
with learning to read
BEFORE AFTER naming
years later. TRAINING TRAINING e

(D. Molfesse, 2000).

Can we change it by

H : ! & S g 1% phoneme
training infants? L o o
We hope so, this may ANy ) dentiicaion
be verified using ERPs. W

4 H "R TR "R e

Infgnt S EEQ is fqll of R N R K
artifacts, big variance, Msec
longer phonemes give
complex ERPs Learned List

Not Learned List



Deaf people playing music?
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The World Hearing Institute (Warsaw) has been organizing music
festivals where deaf people (mostly children) have performed.
Speech understanding and music perception by deaf children
with cochlear implants — filtering EEG artefacts.



Dyscalculia screening/therapy

Understanding numerosity, a new complex brain function, involves
HIPS structure. 6-10% of children in primary education suffer from
dyscalculia, specific difficulties with learning mathematical concepits.
Rarely diagnosed, most countries have no screening tests.

Goals:

1. Introduce screening test
for the preschoolffirst class
to identify children with the
risk of dyscalculia.

2. Short intensive training
using computer game to
associate mental number
line with spatial dimensions.

Further therapy is done by
experts.




Understanding by creating brains

* “Here, we aim to understand the brain to
the extent that we can make humanoid
robots solve tasks typically solved by the
human brain by essentially the same
principles. | postulate that this
‘Understanding the Brain by Creating the
Brain” approach is the only way to fully
understand neural mechanisms in a
rigorous sense.”

®* M. Kawato, From ‘Understanding the Brain by Creating the Brain’ towards

manipulative neuroscience.
Phil. Trans. R. Soc. B 27 June 2008 vol. 363 no. 1500, pp. 2201-2214

®* Humanoid robot may be used for exploring and examining neuroscience
theories about human brain.

®* Engineering goal: build artificial devices at the brain level of competence.



The Great Artificial Brain Race

BLUE BRAIN, HBP: Ecole Polytechnique Fédérale de Lausanne, in
Switzerland, use an IBM supercomputer to simulate minicolumn.

C2: 2009 IBM Almaden built a cortical simulator on Dawn, a Blue Gene/P
supercomputer at Lawrence Livermore National Lab. C2 simulator re-
creates 10° neurons connected by 10*® synapses, small mammal brain.

NEUROGRID: Stanford (K. Boahen), developing chip for ~ 10® neurons and
~ 10%° synapses, aiming at artificial retinas for the blind.

|[FAT 4G: Johns Hopkins Uni (R.Etienne-Cummings) Integrate and Fire Array
Transceiver, over 60K neurons with 120M connections, visual cortex model.

Brain Corporation: San Diego (E. Izhakievich), neuromorphic vision.

BRAINSCALES: EU neuromorphic chip project, FACETS, Fast Analog
Computing with Emergent Transient States, now BrainScaleS, complex
neuron model ~16K synaptic inputs/neuron, integrated closed loop
network-of-networks mimicking a distributed hierarchy of sensory, decision
and motor cortical areas, linking perception to action.



http://bluebrain.epfl.ch/
http://bluebrain.epfl.ch/
http://bluebrain.epfl.ch/
http://www.humanbrainproject.eu/
http://spectrum.ieee.org/computing/hardware/ibm-unveils-a-new-brain-simulator
http://www.stanford.edu/group/brainsinsilicon/neurogrid.html
http://etienne.ece.jhu.edu/projects/ifat/index.html
http://etienne.ece.jhu.edu/projects/ifat/index.html
http://etienne.ece.jhu.edu/projects/ifat/index.html
http://braincorporation.com/
http://facets.kip.uni-heidelberg.de/

Neuromorphic computers

Synapse 2015: IBM TrueNorth chip

~1M neurons and %G synapses, ok 5.4G tranzystorow.

NS16e module=16 chips=16M neurons, >4G synapses, requires only 1.1 W!
Scaling: 256 modules, ~4G neurons, ~1T= 10 synapses < 300 W power!
IBM Neuromorphic System can reach complexity of the human brain.
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Few Initiatives

IEEE Computational Intelligence Society Task Force (J. Mandziuk & W. Duch),
Towards Human-like Intelligence.

JEE*Siy_. p. smm eries on Computatlonal Intelllgencé]
: EEE SSCI 2013

!:F";-—-l_

,-1'15-Man..—.1 meApr-ll 231?.;., .Smgapnre - P
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Call for Papers http://www.ieee-ssci.org/ W Inteiligence

IEEE SSCI The 4th IEEE Symposium on Computational Intelligence for Human-like
Intelligence, Athens, Greece, 6-9.12.2016.

World Congress of Computational Intelligence 2014, Special Session:

Towards Human-like Intelligence (A-H Tan, J. Mandziuk, W .Duch)

Brain-Mind Institute Schools, International Conference on Brain-Mind (ICBM) and
Brain-Mind Magazine (Juyang Weng, Michigan SU).

AGI: conference, Journal of Artificial General Intelligence comments on Cognitive
Architectures and Autonomy: A Comparative Review (eds. Tan, Franklin, Duch).

BICA: Annual International Conf. on Biologically Inspired Cognitive Architectures,
3rd Annual Meeting of the BICA Society, Palermo, Italy, 31.10- 3.11.2012


http://www.brain-mind-institute.org/

Conclusions

Grand challenges are facing us
at every level!

Neurodynamics and neurocognitive phenomics
is the key.

Is there a shorter route
to understand human behavior?

| do not think so ...

Duch W, Brains and Education: Towards Neurocognitive Phenomics (2013)



http://www.fizyka.umk.pl/publications/kmk/13-Brain%20and%20Education.pdf

Soul or brain: what makes us human? Infants, learning,
and cognitive

Interdisciplinary Workshop, Torun development.
konferencja studencko-doktorancka 29-30.10.16
NeuroMania IV < 7t/
28-29 maja 2016, Toruh Interdoctor: Disorders
of consciousness .
19-21.10.16

HOMO COMMLNICATIVUS

WSPOLCZESNE DBLICZA KOMUNIKACJI | INFORMACJI

Torun, 24-25 VI 2013 r.

Cognitivist Autumn in Torun 2011
[PHANTOMOLOGY:

2011 Torun, Poland

COGNITIVIST
AUTUMN IN

Cngnitivist Autumn in Toruan 2010

‘ MIRROR NEURONS:

April, 14-16 2010 Torun, Poland

HISTORY OF ALT



Thank you for
synchronization of
your neurons!

Google: Wlodzislaw Duch
=> papers, talks, lectures ...



DI NCU Projects: Cl

Computational intelligence (Cl), main themes:

Foundations of computational intelligence: meta-learning, transformation
based learning, k-separability, learning hard boole’an problems.

Novel learning: projection pursuit networks, QPC (Quality of Projected
Clusters), search-based neural training, Universal Learning Machines for
transfer learning/learning from others (ULM), Support Feature Machines
(SFM), almost Random Projection Machines (aRPM ), and more ...

Understanding of data: prototype-based rules, visualization of NN function
and visualization of dynamic trajectories.

Similarity based framework for metalearning, heterogeneous systems, new
transfer functions for neural networks.

Feature selection, extraction, creation of enhanced spaces.

General meta-learning, or learning how to learn, deep learning.



DI NCU Projects:NCl

Neurocognitive Informatics: understanding complex cognition
=> creating algorithms that work in similar way.

Computational creativity, insight, intuition, imagery.

Imagery agnosia, especially imagery amusia.

Neurocognitive approach to language, word games.

Medical information retrieval, analysis, visualization.
Comprehensive theory of autism, ADHD, phenomics.
Visualization of high-D trajectories, EEG signals, neurofeedback.
Brain stem models & consciousness in artificial systems.
Geometric theory of brain-mind processes.

Infants: observation, guided development.

Neural determinism, free will & social consequences.
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