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No free lunch theorem

Computational Intelligence should help with: %%‘}Ill]ﬂlﬁ
il
* classification: given vector X assign @ -
class C(X)

* heteroassociation: given vector X
assigh vector Y
* approximation: interpolate and extrapolate in N-D
* prediction: time series
e pattern completion: given X=(X,, X,) find missing part X,
* provide understandable explanation

Some Computational Intelligence methods:

* Neural networks — many types: MLF, RBF, recurrent...
* Fuzzy systems, rough systems.

* Neurofuzzy systems, adaptive fuzzy systems.

* Pattern recognition methods.

* Multivariate statistical methods: LDA, FDA, SYM ...
* Machine learning methods.

* Visualization methods.

Each method has its bias. Cf. Statlog comparison.

* No single method is the best for all data.
* For every method a data is found on which it works ..
* and a data on which it does not work!
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What to do? Which method to choose?

If we only could do it automatically ...

Alas! Only a few simple methods work automatically;
each method requires experience to use it.

Neural networks require too much experimentation — not
suitable for automatic methods.

Decision trees? SYM, LDA, kernel methods?
Sometimes. Restricted application area.

Problems:
no common Cl theory, most theories focused on learning;
different assumptions for different methods;

specialized programs for each task.

An expert system to advice on which method to use?
Difficult to create.

Goal of metalearning:
automatically create the best method for a given problem.

How to do it?

Try to unify many different methods in a single framework.
Search in the model space.

Good candidate for rich framework: similarity based
methods.
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Why similarity based approach?

Various names referring to the similarity based approach:

Memory-Based Methods (MBM),
Instance-Based Methods (IBM),
Case-Based Methods (CBM),
Case-Based Reasoning (CBR),
Memory-Based Reasoning (MBR),
Similarity-Based Reasoning (SBR).

Nearest Neighbor (NN) method - the simplest method of
classification developed in pattern recognition.

Task:
Given a reference set of data vectors and classes

{X(k), G = C(X(k))}
predict the class of a new vector X.
d(X, X¥) is similarity measure (distance function)

p(C1X: M) is classification probability,
M = model parameters (function d(), procedures).

Similarity-based methods include all methods based on
prototypes (kNN, RBF, LVQ, SOM, ...).
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Methods using discriminant functions, such as LDA or MLP
may also be based on similarity |

Example: kNN method

1. Pre—proce% all vectors: zero mean, standardize variance
2. Define similarity (distance) function

N
d(X,Y) = \/Z(Xi -Y)? Euclidean
i—1
N
d(X,Y) => X -Y| Manhattan or City Block
i=1

d(X,Y) :(Z(Xi _Yi)a) Minkovsky

i=1

d(X,Y) = .Tlamx' =Y Chebyschev, or =
- X =Y,
d(X.,Y) :iz—l:Ixi +Yi|| Camberra

d(X,Y) :Z{Z‘Pr(cjlxi) —PF(C,-IYi)H Value Difference Metric
i L

S. Perform classification:
For 1-NN

find min, d(X, R(k)), predict C(X) = C(R(k))
p(C X M) =1 for C;=C(RY)

For k-NN method:
use k neighbors to determine the class;
select k to minimize the number of errors
if k vectors from class C, have the same distance:

p(C 1X: M) = K, /k
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- Advantages of kNN

Very 6imp|6, results should be used as a reference;

No learning phase (except to select k);

No parameters to manipulate;

Leave-one-out test is easily performed,

Usually good results, sometimes best of all classifiers
(if enough reference vectors provided);

Well-suited for industrial, large scale applications.

Many real-world applications

. Disadvantages

Large number of good examples is needed - for small
datasets results may be poor;

No data compression, all reference vectors are kept;
Large computational demands in the classification phase,
Large memory requirements.

No automatic feature selection.

Decision regions: hypersurfaces, for 1-NN convex polygons

Asymptotic errors for k - o and for the number of
reference vectors - o reach optimal Bayesian values.

In practice small k may work better.
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A Framework for SB Methods

Prob. p(C |X;M) of assigning class C, to vector X

v ={k.d(er).6(d(1) {R}. n (R). E[JK (3.00) { prog}

K humber of neighbors included,
d(4r) similarity function with parameter r
G(d(4r)) function that weights the contribution of R
{R"} a set of reference vectors (prototypes)
{pi(R™)} class probability for reference vector
E[L/ cost function K
K()/ kernel function, scaling the influence of

the

error on the cost function

O( ) risk function

proc, various procedures such as:

Learning methods.

Methods to optimize model complexity.

Mixture of many models M,

Methods of feature/reference selection.

Various network realizations.
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* Learning

gradient minimization of cost function;
global optimization minimization methods;
Bayesian learning, with regularization;
Mean Field Theory learning.

General form of a cost function with a risk matrix:

E({X};0,M5 ZZD (C,C(X))H(p(C|X; M),d(C,C(X)))

H — usually a quadratic function or entropy measure,

Select the best model from the SBM framework,
combining parameters/procedures.

* start from the simplest model;

* check results of adding parameters/procedures;
* select the best extension;

* repeat until no significant improvement is found.

Optimize different type of parameters only if
significant improvements of results are obtained.

Start with the simplest models, such as kNN or LVQ
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. Few examples of SBM framework methods

M ={k.d(ix),6(d(1){R}. p (R). E[]. K (3.00) { prog }
k-NN

G(d(4¥)) =hard sphere with k+1 vectors inside
Training vectors = the reference set {R"}

{P(R™)=1},  K(J#I

E[/7K] = number of errors in the leave-one-out
Realization: Hamming neural network for binary inputs
r-NN

G(d(4¥)) = hard sphere of radius r: optimize r
K — variable, some vectors may be rejected
Hard limit of RBF

Realization: Restricted Coulomb Energy (RCE)
classifier
a mixture of r-NN models after initial clusterization

Soft weighting k-NN and r-NN algorithms:

Instead of the hard sphere weighting function use
continuous G().
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The conical radial function (triangular membership
function):

G(X,R;r) = max(01-d(X,R)/r)
Gaussian, inverse multiquadratic or other radial f,
Bicentral function
G(X,Rif) = of|X ~R] =) ~af|X ~R]| +r)

where O is a sigmoidal function.
o(X;W)

d(X;W)
Many other localized functions.

In k-NN if r, is the distance to k-th neighbor

G(d;r,,a)=max(01-d/ar,), optimize a /\

For large @ standard kNN (no weighting)
For a=1last neighbor is not counted.
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Parameterization of similarity measures

N
d(X,Y) = \/Z(Xi -Y)? Euclidean
i—1
N
d(X,Y) => X -Y| Manhattan or City Block
i=1

N

d(X,Y) :(Z(Xi _Yi)a) Minkovsky

i=1

d(X,Y) :Z[Z\p(ci 1X,)-p(C, m)ﬂ
j i
Modified Value Difference Metric

Scaling different components of data vectors:
d(X,Y;s)’ Zg\x -Y|"

Probabilistic scaled distance measures, like MVDM.
a N K a
d(X,Y)" =33 5[p(C X))~ p(C X))
i

for symbolic or discrete values.
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* More complex similarity functions.

MLF or any other adaptive continuous function may
be used as a similarity function.

Train to minimize in-class distance variance and
maximize between-class variance.

Soft multistep function — “neural” formulation.
Combination of sigmoidal functions transforming
features:
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. Active Selection of Reference Vectors

Select {R"M} from the training vectors:
add new vectors only if they improve results;
remove vectors that do not degrade results;

remove vectors with all k neighbors [l same class.

Focus on classification border: select nearest vectors
from those that belong to other classes.

. Optimize reference vectors
R « R+73.,(C(X),C(R)(X -R)
or use other LVQ techniques.

Add Virtual Support Vectors (VSV) at the border if
hecessary.

Repeat selection/optimization steps.

If LDA or SYM (single hyperplane) gives best results
only 2 prototype vectors are sufficient.
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P-rules (prototype-based rules)

More general than fuzzy rules?
Distance functions => memberehip functions.

Several methods to create them:

neural: RBF or LVQ-like, neurofuzzy
decision trees approaches
minimal distance or similarity-based approaches

the nearest neighbor method, kNN, k=1
optimization of distance function
selection of relevant features.
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SB methods and Neural Networks

Radial Basis Function neural networks (RBF) are a
special case of MD method with

G(d(3r)) — Gaussian or other radial function,

d — Euclidean distance (other metric functions may
be used).

D-MLF, distance-based MLFPs

o(W X~ )= o JWF +IxI" -1w -XI") -6

G(D) = o(d, - D(W, X))

o(X;W)
1.07
1
do=—(WI" +[X[") -6 o5 |
1
DW= (W-x[F) ol
do d(X;w)

1 2
d(X,Y)= EZ;‘Xi —Y,‘ corresponds to MLF with the

standard scalar product activation

Sigmoidal functions scale the influence of references.
d,— scale factor, 0(0)=0.5 for D(W, X) = d,
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Minkoveky distance, MLF first, than d =0.5, 1, 1.5, 2, 7

=8 -DE -DE e -E2 ] iz E= BE BB
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Simpleet SBM network realization

Hidden nodes compute distances D(X-R).
k hodes with min distances output class label h(X:R)=C,
Others nodes h;(X:R)=0.

Output layer computes confidence factors:
P(C|X; M) Z - [h, (X)
Output weights V\(, SC.C)/C, C=1.N,

Ci class vector in the rradius of X contributes YC; ,G),
where (') = similarity among the output classes.

After normalization this network estimates probabilitiee:

P(C|X; M)
2. P(CIX;M)

p(CIX;M) =
Cost function used for training:
E(M(k,r, W) =3 3" R(C,, C(X))(P(C, IX, M) = &(C,,C(X))’

where R(,) is the risk matrix.
Weights, K, r are treated as adaptive parameters.

Many other network realizations are possible.

OlMetal-17F



Pattern completion and missing values.

In SBM partially known input X=(X,, X,) may be used to
find neighbors in the subspace of defined input X,
Probability of unknown values X, (multiple data
imputation) is calculated by:

P(X | Xgi M) = max,; P(CI(X,. X,): M)

Echocardiogram data (UCI): 132 vectors, 12
attributes, only 1-9 useful, 2 classes.
15 values of AG missing, 11 values A7 etc.

Hepatitis dataset (UCI): 155 vectors, 1& attributes,
15 binary, other integer, 2 classes.

A1E has ©7 missing values, A1 has 29 etc.

10-fold stratified CV tests using FSM network

Method Echocardiogram |Hepatitis

Ignored &7.6%, 24 nodes |79.9%, 19 nodes

Averages 55.5%, 20 nodes |&1.0%, 12 nodes

New values |81.5%, 22 nodes |79.1%, 16 nodes

Maximize p  |90.2%, 16 nodes |565.4% 10 nodes
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Meta-learning algorithm.
Combine Al search and Cl optimization approachee.

Given a framework for generation of Cl models search the
set of all possible models {M_}:

start from simplest models,

add more procedures/parameters,

select the best models,

continue search until there is no improvement.

Best = simplest and most accurate, includes complexity.
Avoid overtfitting, check model complexity, use validation
sets or criteria such as

Minimum Description Length (MDL)
Guaranteed Risk Minimization (GRM)
Information-based criteria (AIC, BIC, SIC).

Cl models are homogenous, use the same type of
parameters, add more elements to build decision borders.

Ex: Decision Trees create hyp@rboxee,
NN use soft hyperplanes,
RBF use Gaussians ...

Result: simple problems become complex.
Spherical distribution in N-dim. requires N+1
hyperplanes.

Single plane requires many Gaussians.
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Evaluation function C(M,), ex. accuracy on validation set.
M initial models, select K final models.

The model sequence selection algorithm based on the Best-
First Search (BFS) procedure is:

Create a pool of M initial models {M}, I=1.. M.

Optimize and evaluate C(M)),

arrange models in a decreasing order C_(M;) 2 C,(M,) for i>].
Select best model Mg from the {M} pool as the reference.
Remove it from the pool of models.

Repeat until the pool of models is empty:

Extend Mg:

DM, evaluate performance Mg+M,

If there is a significant improvement:
replace My « Mg+M, with best extension, max C(Mg+M))
remove M, from the pool of available models.

ELSE stop, return M.

M- L sequences evaluated per step, L=M-1,.,1
Result: sequence of models of increasing complexity.

Warning: sequential optimization does not guarantee
absolute optimum.
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BFS — prone to local minima.
Beam search — more costly, but better results.
Select several models of similar accuracy.

Example:
Start from M = simplest k-nn, k=1, Euclidean.
C(M)) is the leave-1-out accuracy.

Model extensions include:

Optimization of k, k; Sk <k,

Selection of the type of d(X,Y): Euclidean, Manhattan,
Chebyschev and Camberra.

Feature selection.

Optimization of scaling factors.

d(X,Y;s)’ Zg\x -Y|"

a =1, 2 was used with scaling.
FParameter optimization:

simplex method + quantization of parameters, § « § £0.1
Sometimes gives rather large variance.
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Monk probleme

round -
Artificial datasets used to test ML head shape “quaie
oolagon .
programs, data from UCI repository.
round -
body shape squate -
© symbolic input features, eclagon .
124 training cases, Is smiling yes
432 test cases, =
2 classes: monk, not-monk. holding o
tlag
Monk-1 problem: red
{4 yellow
monk if (head shape = body shape) [ {ﬁnz 'gl.in
jacket color = red blue
hastle |
Difficult for SBM, easy for rule-based. astie e
C(M)) is the leave-1-out accuracy.
Reference model: k-nn, k=1, Euclidean distance,
C(M)) on training 70.6% (test result £5.9%).
Method C(M)) train % |Test acc. %
M, = k-nn, k=1, Euclidean | 76.6 85.9
M+ Camberra distance |79.8 88.4
M+ k=3 82.3 80.6
M+ feature sel. 1, 2,5 96.8 100.0
M,=M,+feature weights |99.2 100.0
new reference
M.+ Camberra distance |100.0 100.0

Weights selected: (1,1, 0.1, 0, 0.9, O)
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Monk 2 problem:

Rule: Monk IF exactly 2 of © attributes have first value.
169 cases for training, 422 test cases

k-NN

+d(X,y);
Camberra 89.9/90.7 %

+sal ection,
67.5/76.6 %

+k opt; 67.5/76.6 %

+5=(0,0,1,0,1,1);

71.6/64.4 %

T~

+d(x,y) + s=(1,0,1,0.6,0.9,1);

Camberra74.6/72.9 %

+d(Xx,y) + sel. or opt k;
Camberra 89.9/90.7 %

Best sequence: k-nn with Camberra distance function,
training accuracy £9.9%, test accuracy 90.7%.
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Monk-3 problem:

Rule: = (body shape = octagon U jacket color = blue) [
(holding = sward Ujacket color = green)

122 training cases, 452 test cases

© mislabeled vectors in the training set (4.9%) to simulate

the effects of noise in the data.

k-NN

+selection,
93.4/98.6 %

+d(X,y); +k=2 opt; 88.5/91.7

Euclid. 86.9/91.0 %

+5=(0,1,0,0,0.1,1)
93.4/97.2 %

N\

+5=(1,0,1,0.6,0.9,1) +d(x,y); +s, + sel. or opt k;
Euclid 93.4/97.2 % Euclid 93.4/97.2 %

Although test results were better with feature selection
only the training results may be used for evaluation!
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Comparison of results for the Monk FProblems

Inductive machine learning methods have some advantages
for this type of problems, but SBL with meta-learning does
fine.

MONK-1  MONK-2 MONK-3 (%)

ML Methods

D3 08.6 67.9 94.4
IDBR 79.7 61.8 95.2
AQR 95.9 79.7 87.0
CN2 100.0 69.0 89.1
CLASSWEB 0.10  71.8 64.8 80.8
MLP+BF 100 100 93.1

SBL+meta 100 90.7 97.2
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Hepatobiliary disorders.

Y. Hayashi, A. Imura, K. Yoshida, Fuzzy neural expert
system and its pplication to medical diagnosis”. &th Int.
Congress on Cybernetics and Systems, N.Y. City, pp. 54-01,
1990.

B30 patients, Tokyo-based hospital

4 types of hepatobiliary disorders:
1. alcoholic liver damage (AL), 54.0%
2. primary hepatoma (PH), 22.9%
3. liver cirrhosis (LC), 22.2%
4. cholelithiasis (CH), 19.6%

Each record: 9 biochemical tests + sex.
103 cases used as the test data.

Strongly overlapping classes, difficult data.
100 fuzzy rules give about 75-76% accuracy.

k-nn, k=1, Euclidean distance, 72.7% L10 (77.9% test).
First level

Optimization of k, k=1, acc 72.7% (test 77.9%).
Optimization of d=Manhattan, 79.1% (test 77.9%).
Feature sel, removed 1 (Creatinine level), 74.2% (test 79.1%).
Feature weight, Euclidean, 76.0% (test 786.5%);
weights are [1.0, 1.0, 0.7, 1.0, 0.2, 0.3, 0.8, 0.8, 0.0].

New reference: Manhattan distance.
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Second level:
k opt, k=1, no change
Feature sel, no change

Feature weighting, £0.1% (test 60.4\%).
(final weights are [1.0, 0.8, 1.0, 0.9, 0.4, 1.0, 1.0, 1.0, 1.0]

Method Training  Test Reference

set set
IB2-1B4 81.2-855 |44.6 |'/EKA our

calculation

Naive Bayes -- 46.6 |WEKA, our
1R (rules) 58.4 50.3 |WEKA, our
T2 (rules from decision tree) 67.5 53.3 |WEKA, our
FOIL (inductive logic) 99 60.1 |WEKA, our
FSM, 49 crisp logical rules 83.5 63.2 |FSM, our
LDA (statistical) 68.4 65.0 |our calculation
DLVQ (38 nodes) 100 66.0 |our calculation
C4.5 decision rules 64.5 66.3  |our calculation
Best fuzzy MLP model 75.5 66.3 |Mitra et. al
MLP with RPROP 68.0  |our calculation
Cascade Correlation 71.0  |our calculation
Fuzzy neural network 100 75.5 |Hayashi
C4.5 decision tree 94.4 75.5 |our calculation
FSM, Gaussian functions 93 75.6  |our calculation
FSM, 60 triangular functions 93 75.8  |our calculation
IB1c (instance-based) -- 76.7 |WEKA, our
kNN, k=1, Manhattan 79.1 77.9 |our calculation, KG
K* method -- 78.5 |WEKA, our
L-NN, 4 features removed, 76.9 80.4 |our calculation, KG

Manhattan
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lonosphere data

Data from UCI, 200 training vectors, 150 test.
34 continuous features, 2 classes.

Small, with many features, in the training set half from
classl, in the test set only 16% from class 1.

k-nn, k=1, Euclidean distance, 6.0% (92.0% test).

First level

Optimization of k, k=1, acc £6.0% (test 92.0%).

Optimization of d=Manhattan, 87.5% (test 90.0%).

Feature sel, leaves 10 features, 92.5% (test 92.7%).

Feature weighting, Euclidean, 94.0% (test 57.25%);
© non-zero weights are left.

Second level, reference = feature weighting
Optimization of k, no change

Optimization of d=Manhattan, 95.0% (test £5.0%).
Feature sel, no change.

No correlation between results on the training and on the

test set in this casel
Good results may be obtained by chance only.
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Statlog preliminary results

25 algorithms & 22 datasets.
Goal: get best results using SBM for all datasets!

Data k-NN |SBM |Best
rank |rank |algorithm
Handwritten digits 1 T |k-NN
KL-digits 1 T |k-NN
Satlmage 1 T |k-NN
Handwriting 1 T |k-NN
segmentation, Cut 50
Image segmentation 16 1T Allocb0
Heart disease (+costs) 10 1 |Bayes
rule
German credit (+costs) 10 1 |LDA
Australian credit 15 2 |Calb (DT)
Cut 20 2 ? |Bayes
rule
Letters 2 ?  |Alloc&0
Chromosome 5 2 |QDA
Vehicle images 1 QDA
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Conclusions

1. Meta-learning may automatically find the best
combinations pf parameters and procedures
escaping from the no-free-lunch curse.

2.Integration of many Cl methods is possible in the
SBM framework.

S.Many new Cl methods result from the framework.

4, RBF, MLFPs and other neural networks are also a
special case of SEM.

D.Missing data, pattern completion, associative
memory and other applications are possible.

Challenges:

Programming all procedures/methods.

Optimal search in the space of all modele.

SBL network realizations optimizing distance
functions separately for each node.

Approximation methods have not yet been included.
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