
Meta-Learning

Universal meta-learning architecture and algorithms

Norbert Jankowski norbert@is.umk.pl

Krzysztof Grąbczewski kg@is.umk.pl

Department of Informatics

Nicolaus Copernicus University
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Abstract

There are hundreds of algorithms within data mining. Some of them are used to transform
data, some to build classifiers, others for prediction, etc. Nobody knows well all these
algorithms and nobody can know all the arcana of their behavior in all possible applications.
How to find the best combination of transformation and final machine which solves given
problem?

The solution is to use configurable and efficient meta-learning to solve data mining
problems. Below, a general and flexible meta-learning system is presented. It can be used
to solve different problems with computational intelligence, basing on learning from data.

The main ideas of our meta-learning algorithms lie in complexity controlled loop,
searching for most adequate models and in using special functional specification of search
spaces (the meta-learning spaces) combined with flexible way of defining the goal of meta-
searching.

Keywords: Meta-Learning, Data Mining, Learning Machines, Computational Intelli-
gence, Data Mining System Architecture, Computational Intelligence System Architecture

1. Introduction

Recent decades have brought large amount of data, eligible for automated analysis that could
result in valuable descriptions, classifiers, approximators, visualizations or other forms of
models. The Computational Intelligence (CI) community has formulated many algorithms
for data transformation and for solving classification, approximation and other optimization
problems (Jankowski and Grąbczewski, 2006). The algorithms may be combined in many
ways, so that the tasks of finding optimal solutions are very hard and require sophisticated
tools. Nontriviality of model selection is evident when browsing the results of NIPS 2003
Challenge in Feature Selection (Guyon, 2003; Guyon et al., 2006), WCCI Performance
Prediction Challenge (Guyon, 2006) in 2006 or other similar contests.

Most real life learning problems can be reasonably solved only by complex models,
revealing good cooperation between different kinds of learning machines. To perform suc-
cessful learning from data in an automated manner, we need to exploit meta-knowledge
i.e. the knowledge about how to build an efficient learning machine providing an accurate
solution to the problem being solved.

One of the approaches to meta-learning develops methods of decision committees con-
struction, different stacking strategies, also performing nontrivial analysis of member mod-
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els to draw committee conclusions (Chan and Stolfo, 1996; Prodromidis and Chan, 2000;
Todorovski and Dzeroski, 2003; Duch and Itert, 2003; Jankowski and Grąbczewski, 2005).
Another group of meta-learning enterprises (Pfahringer et al., 2000; Brazdil et al., 2003;
Bensusan et al., 2000; Peng et al., 2002) base on data characterization techniques (char-
acteristics of data like number of features/vectors/classes, features variances, information
measures on features, also from decision trees etc.) or on landmarking (machines are ranked
on the basis of simple machines performances before starting the more power consuming
ones) and try to learn the relation between such data descriptions and accuracy of different
learning methods. Although the projects are really interesting, they still suffer from many
limitations and may be extended in a number of ways. The whole space of possible and
interesting models is not browsed so thoroughly, thereby some types of solutions can not be
found with this kind of approaches.

In gating neural networks (Kadlec and Gabrys, 2008) authors use neural networks to
predict performance of proposed local experts (machines proceeded by transformations)
and decide about final decision (the best combination learned by regression) of the whole
system. Another application of meta-learning for optimization problems by building relation
between elements which characterize problem and performance of algorithms can be found
in (Smith-Miles, 2008).

We do not believe that on the basis of some, not very sophisticated or expensive, de-
scription of the data, it is possible to predict the structure and configuration of the most
successful learner. Thus, in our approach the term meta-learning encompasses the whole
complex process of model construction including adjustment of training parameters for dif-
ferent parts of the model hierarchy, construction of hierarchies, combining miscellaneous
data transformation methods and other adaptive processes, performing model validation
and complexity analysis, etc. So in fact, our approach to meta-learning is a search process,
however not a naive search throughout the whole space of possible models, but a search
driven by heuristics protecting from spending time on learning processes of poor promise
and from the danger of combinatorial explosion.

This article presents many aspects of our meta-learning approach. In Section 2 we
present some basic assumptions and general ideas of our efforts. Section 3 presents the main
ideas of the computational framework we have developed to make deeper meta-level analysis
possible. Next, Section 4 describes the Meta Parameter Search Machine, which supports
simple searches within the space of possible models. Section 5 is the most important part
which describe main parts of meta-learning algorithm (definition of configuration of meta-
learning, elements of scheme of main algorithm presented in Section 2, complexity control
engine). Section 7 presents example application of proposed meta-learning algorithm for
variety of benchmark data streams.

2. General Meta-learning Framework

First the difference between learning and meta-learning should be pointed out. Both the
learning and meta-learning are considering in the context of learning from data, which
is common around computational intelligence problems. Learning process of a learning
machine L is a function A(L):

A(L) : KL ×D →M, (1)
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where KL represents the space of configuration parameters of given learning machine L, D
defines the space of data streams (typically a single data table, sometimes composed by few
independent data inputs), which provide the learning material, and M defines the space
of goal models. Models should play a role (assumed by L) like classifier, feature selector,
feature extractor, approximator, prototype selector, etc.

Indeed, learning should be seen as the process in which some free parameters of the
machine M are adjusted or determined according to a strategy (algorithm) of the learning
machine L. After the learning process of L, the model M should be ready to use as a
classifier, data transformer, etc. depending on the goal of L.

From such point of view meta-learning is another or rather specific learning machine.
In the case of meta-learning the learning phase learn how to learn, to learn as well as
possible. This means that the target model of a meta-learning machine (as the output
of meta-learning) is a configuration of a learning machine extracted by meta-learning algo-
rithm. The configuration produced by meta-learning should play the goal-role (like, already
mentioned, classifier, approximator, data transformer, etc.) of meta-learning task. It is im-
portant to see that meta-learning is obligated to chose machine type (it may be even very
complex one) and their strict configuration. This is because different configuration may
provide incomparable behavior of given learning machine. Of course such definition does
not indicate, how the meta-learning should search for the best type of learning machine and
their best configuration.

Almost always meta-learning algorithms learn by observation and testing of nested learn-
ing machines. Meta-learning differ in the strategy of selection, which learning machines to
observe and what to observe in chosen machines to find possibly best or at least satisfactory
conclusions. From the theoretical point of view meta-learning, in general, is not limited in
any way except the limitation of memory and time.

We propose a unified scheme of meta-learning algorithms (MLAs) which base on learning
from observations. It is depicted in Figure 1.

The initialization step is a link between given configuration of meta-learning (which is
very important question—see Section 5.2) and the further steps.

The meta-learning algorithm, after some initialization, starts the main loop, which up
to the given stop condition, runs different learning processes, monitors them and concludes
from their gains. In each repetition, it defines a number of tasks which test the behav-
ior of appropriate learning configurations (i.e. configurations of single or complex learning
machines)—step start some tasks. In other words, at this step it is decided, which (when
and whether) machines are tested and how it is done (the strategy of given MLA). In the
next step (wait for any task) the MLA waits until any test task is finished, so that the main
loop may be continued. A test task may finish in a natural way (at the assumed end of the
task) or due to some exception (different types of errors, broken by meta-learning because
of exceeded time limit and so on). After a task is finished, its results are analyzed and
evaluated. In this step some results may be accumulated (for example saving information
about best machines) and new knowledge items created (e.g. about different machines coop-
erations). Such knowledge may have crucial influence on further parts of the meta-learning
(tasks formulation and the control of the search through the space of learning machines).
Precious conclusions may be drawn, even if a task is finished in a non-natural way.
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Figure 1: General meta-learning algorithm.

When the stop condition becomes satisfied, the MLA prepares and returns the final
result: the configuration of chosen learning machine or, in more general way, even a ranking
of learning machines (ordered by a degree of goal satisfaction), comments on chosen learning
machines and their interactions, etc.

Each of the key steps of this general meta-learning algorithm may be realized in different
ways yielding different meta-learning algorithms.

It is important to see that such a general scheme is not limited to a single strategy of
MLA or searching by observing task by task (MLA autonomously decides about current
group of started test tasks). This scheme does not apply any limits to the learning machine
search space which in general can be a non-fixed space and may evaluate in the progress
of meta search, for example to produce complex substitutions of machines. This opens the
gates even to directing the functional space of learning machines according to collected meta-
knowledge. Also the stop condition may be defined according to the considered problem
and their limits.

This meta-scheme may be used to solve different types of problems. It is not limited
only to classification or approximation problems.

First, note that finding an optimal model for given data mining problem P is almost
always NP hard. Because of that, meta-learning algorithms should focus on finding approx-
imation to the optimal solution independently of the problem type. Second, it would be
very useful if the meta-learning could find solutions which at least are not worst than the
ones that can be found by human experts in data mining in given limited amount of time.
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,,At least” because usually meta-learning should find more attractive solutions, sometimes
even of surprising structure. In general meta-learning is more open to make deeper obser-
vation of intermediate test tasks and the search procedure may be more exhaustive and
consistent. Experts usually restrict their tests to a part of algorithms and to some schemes
of using them. Sophisticated meta-learning may quite easily overcome such disadvantages
simultaneously keeping high level of flexibility.

This is why our general goal of the meta-learning is to maximize the probability of
finding, as optimal as possible, solution of given problem P in as short time as possible for
determined searching space.

As a consequence of such definition of the goal, the construction of meta-learning algo-
rithm should carefully advise the order of testing tasks during the progress of the search
and build meta-knowledge based on the experience from passed tests. Meta-knowledge may
cover experience of so different kinds, among others: the correlations between subparts
of machines in the context of performance, experience connected to the complexities of
machines etc.

In our meta-learning approach, the algorithms search not only among base learning
machines, but also produce and test different, sometimes quite complex machines like com-
positions of (several) transformations and classifiers (or other final e.i. decision making
machines), committees of different types of machines, including complex ones (like compo-
sition of a transformer and a classifier as a single classifier inside the committee). Also, the
transformations may be nested or compose chains. The compositions of complex machines
may vary in their behavior and goal.

In the past, we have come up with the idea that meta-learning algorithms should favorite
simple solutions and start the machines providing them before more complex ones. It means
that MLAs should start with maximally plain learning machines, then they should test
some plain compositions of machines (plain transformations with plain classifiers), after
that more and more complex structures of learning machines (complex committees, multi-
transformations etc.). But the problem is that the order of such generated tasks does not
reflect real complexity of the tasks in the context of problem P described by data D. Let’s
consider two testing tasks T1 and T2 of computational complexities O(mf2) and O(m2f)
respectively. Assume the data D is given in the form of data table and m is the number
of instances and f is the number of features. In such case, it is not possible to compare
time consumption of T1 and T2 until the final values m and f are known. What’s more,
sometimes a composition of a transformation and a classifier may be indeed of smaller
complexity than the classifier without transformation. It is true because when using a
transformation, the data passed to the learning process of the classifier may be of smaller
complexity and, as a consequence, classifier’s learning is simpler and the difference between
the classifier learning complexities, with and without transformation may be bigger than
the cost of the transformation. This proves that real complexity is not reflected directly by
structure of learning machine.

To obtain the right order in the searching queue of learning machines, a complexity
measure should be used. Although the Kolmogorov complexity (Kolmogorov, 1965; Li and
Vitányi, 1993)

CK(P ) = min
p
{l(p) : program p prints P} (2)
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is very well defined from theoretical point of view, it is unrealistic from practical side—
the program p may work for a very long time. Levin’s definition (Li and Vitányi, 1993)
introduced a term responsible for time consumption:

CL(P ) = min
p
{cL(p) : program p prints P in time tp} (3)

where

cL(p) = l(p) + log(tp). (4)

This definition is much more realistic in practical realization because of the time limit
(Jankowski, 1995; Li and Vitányi, 1993). Such definition of complexity (or similar, as it will
be seen further in this paper) helps prepare the order according to the real complexity of
test tasks.

Concluding this section, the meta-learning algorithm presented below as a special real-
ization of the general meta-learning scheme described above, can be shortly summarized by
the following items:

• The search is performed in a functional space of different learning algorithms and of
different kinds of algorithms. Learning machines for the tests will be generated using
specialized machines generators.

• The mail loop is controlled by checking the complexity of the test tasks. Complexity
control is also useful to handle with halting problems of subsequent tasks, started by
meta-learning.

• Meta-learning collects meta-knowledge basing on the intermediate test tasks. Using
this knowledge the algorithm provides some correction of complexities, and changes
the behavior of advanced machine generators, what has crucial role in defining the
meta-space of learning machines. The knowledge may be accumulated per given
problem but also may survive like for example in the case of the knowledge about
complexities. Meta-learning algorithms may use meta-knowledge collected from other
learning tasks.

What can be the role of meta-learning in the context of no free lunch theorem?
Let’s start from another side, from the point of view of a learning machine which has sat-
isfactory level of validated(!) performance on the training data and smallest complexity
among other machines of similar performance, such simplest solution has the highest prob-
ability of success on a test set, and it was shown in literature from several perspectives like
bias-variance, minimum description length, regularization, etc (Bishop, 1995; Duda et al.,
2001; Hastie et al., 2001; Rissanen, 1978; Mitchell, 1997). From this side, in the case of
classification problems, the process of meta-learning gives closer solution to the optimal
Bayesian classifier than single (accidental?) learning machine.

The problem is that no free lunch theorem does not assume any relation of the dis-
tribution P (X,Y ) of the learning data D with the distribution P (X ′, F (X ′)) (X ⊂ X ′)
of unknown target function F (.) except being not contradictory at points of the data D.
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Within the context of given learning data D, not all targets have similarly high (or highest)
probability of evidence.

The perfect learning machine should discover not the origin-target, but the most prob-
able target. In other words: the goal of generalization is not to predict an unpredictable
model.

3. General System Architecture

Advanced data mining, including meta-learning, is not possible without a general and ver-
satile framework for easy and efficient management of different models, performing tests
etc. One of the main keys to such a system is a unified view of machines and models.
We define a machine as any process that can be configured and run to bring some results.
The results of the processes constitute models. For example an MLP network algorithm
(Werbose, 1974) as the MLP machine can be configured by the network structure, initial
weights, learning parameters etc. It can be run on some training data, and the result is a
trained network—the MLP model created by the learning process of the MLP machine.

We deliberately avoid using the term “learning machine”, since in our approach a ma-
chine can perform any process which we would, not necessarily, call a learning process, such
as loading data from a disk file, data standardization or testing a classifier on external data.

A general view of a machine is presented in Figure 2. Before a machine may be created it

Machine

Input 1...

Input n

Output 1...

Output m

Machine process
parameters

Results
repository

Figure 2: The abstract view of a machine.

must be completely configured and its context must be defined. Full machine configuration
consists of:

• specification of inputs and outputs (how many, names and types),

• machine process parameters,

• submachines configuration (it is not depicted in Figure 2 to keep the figure clear; in
further figures, starting with Figure 3, the submachines are visible as boxes placed
within the parent machine).

Machine context is the information about:

• the parent machine (handled automatically by the system, when a machine orders
creation of another machine) and the child index,
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• input bindings i.e. the specification of other machines outputs that are to be passed
as inputs to the machine to be created.

Some parts of machine configuration are fixed and do not require verbatim specification each
time, a machine is created (e.g. the collection of inputs and outputs, for most machines,
are always the same). Other configuration items usually have some (most common or
most sensible) default values, so the machine user needs to specify only the items, that are
different from the defaults.

A properly configured machine can be run (more precisely, the machine process is run
to create the model). After the machine process is finished, the results may be deposited
in the results repository and/or exhibited as outputs.

The inputs and outputs serve as sockets for information exchange between machines.
The difference between machine inputs and configuration is that inputs come from other
machines and the configuration contains the parameters of the process provided by the user.
It is up to the machine author whether the machine receives any inputs and whether it has
some adjustable parameters.

Similarly, machine outputs provide information about the model to other machines, and
results repositories contain additional information about machine processes—the informa-
tion that is not expected by other machines in the form of inputs.

The interconnections between outputs and inputs of different machines define the infor-
mation flow within the project. Therefore, it is very important to properly encapsulate the
CI functionality into machines. For more flexibility, each machine can create and manage
a collection of submachines, performing separate, well defined parts of more complex algo-
rithms. This facilitates creating multi-level complex machines while keeping each particular
machine simple and easy to manipulate. An example of a machine with submachines is the
repeater machine presented in Figure 3 The submachines are placed within the area of their

Repeater

Data

Distributor scheme

Data

Training data

Test data

CV distributor

Data

Training data

Test data

Test scheme

Training data

Test data

1
1

Test scheme

Training data

Test data

2
2

Distributor scheme

Data

Training data

Test data

CV distributor

Data

Training data

Test data

Test scheme

Training data

Test data

1
1

Test scheme

Training data

Test data

2
2

Figure 3: Run time view of Repeater machine configured to perform twice 2-fold CV. Test
schemes are simplified for clearer view—in fact each one contains a scenario to
be repeated within the CV, for example the one of Figure 4.
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parent machines.
The repeater in the example, performed two independent runs of 2-fold cross-validation

(CV). It has generated two distributors (one for each CV cycle) and four test schemes (two
per CV cycle). The CV distributor outputs are two training sets and two test sets—the first
elements go to the inputs of the first test scheme and the second elements to the second
scheme. In this example the repeater machine has 6 submachines, each having further
submachines.

3.1 Schemes and Machine Configuration Templates

When configuring complex machines like the repeater in Figure 3, it is important to be
provided with simple tools for machine hierarchy construction. To be properly defined, the
repeater needs definitions of two schemes: one defining the distributor (i.e. the machine
providing training and test data for each fold) and one to specify the test performed in
each fold (Figure 4 shows an example test scenario, where kNN (k-nearest neighbors (Cover

Test scheme

Training Data

Test Data

SVM

Data Classifier

kNN

Data Classifier

Classification test

Data

Classifier

Classification test

Data

Classifier

Figure 4: A test scheme example.

and Hart, 1967)) and SVM (support vector machines (Boser et al., 1992; Vapnik, 1998))
classifiers are, in parallel, created, trained on the training data and tested on the test data).
At run time the repeater creates and runs the distributor scheme, and then creates and
runs a number of test schemes with inputs bound with subsequent data series exhibited as
distributor scheme outputs.

The repeater’s children are schemes, i.e. machines especially designated for constructing
machine hierarchies. Schemes do not perform any advanced processes for themselves, but
just run graphs of their children (request creation of the children and wait till all the children
are ready to eventually exhibit their outputs to other machines).

A machine configuration with empty scheme (or empty schemes) as child machine con-
figuration (scheme which contain information only about types and names of inputs and
outputs) is called a machine template (or more precisely a machine configuration template).
Machine templates are very advantageous in meta-learning, since they facilitate definition
of general learning strategies that can be filled with different elements to test a number of
similar components in similar circumstances. Empty scheme may be filled by one or more
configurations. The types of empty scheme inputs and outputs defines general type of role
of scheme. For example, the feature selection template, presented in Figure 5, may be very
useful for testing different feature ranking methods from the point of view of their eligibility
for feature selection tasks. The dashed box represents a placeholder (empty scheme with
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Feature selection template

Data

Data

Transformation

Ranking

Data Feature ranking

Feature selection

Data

Feature ranking

Data

Transformation

Figure 5: Feature selection template.

defined types and names of inputs and outputs) for a ranking. In case of ranking the scheme
has single input with data and single output with information about ranking of features.
After replacing the Ranking placeholder by a compatible configuration the whole construct
can be created and run or put into another configuration for more complex experiments.

3.2 Query System

Standardization of machine results management makes the technical aspects of results anal-
ysis completely independent of the specifics of particular machines. Therefore, we have de-
signed the results repository, where the information may be exposed in one of three standard
ways:

• the machine itself may deposit its results to the repository (e.g. classification test
machines put the value of accuracy into the repository),

• parent machines may comment their submachines (e.g. repeater machines comment
their subschemes with the repetition and fold indices),

• special commentator objects may comment machines at any time (this subject is
beyond the scope of this article, so we do not describe it in more detail).

The information within the repository has a form of label-value mappings.

Putting the results into the repositories is advantageous also from the perspective of
memory usage. Machines can be discarded from memory when no other machine needs
their outputs, while the results and comments repositories (which should be filled with
moderation) stay in memory and are available for further analysis.

The information can be accessed directly (it can be called a low level access) or by run-
ning a query (definitely recommended) to collect the necessary information from a machine
subtree.

Queries facilitate collection and analysis of the results of machines in the project, it is
not necessary to know the internals of the particular machines. It is sufficient to know the
labels of the values deposited to the repository.

A query is defined by:

• the root machine of the query search,

• a qualifier i.e. a filtering object—the one that decides whether an item corresponding
to a machine in the tree, is added to the result series or not,
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• a labeler i.e. the object collecting the results objects that describe a machine qualified
to the result series.

Running a query means performing a search through the tree structure of submachines
of the root machine and collecting a dictionary of label-value mappings (the task of the
labeler) for each tree node qualified by the qualifier.

For example, consider a repeater machine producing run time hierarchy of submachines
as in Figure 3 with test schemes as in Figure 4. After the repeater is finished, its parent
wants to collect all the accuracies of SVM machines, so it runs the following code:

1 Query.Series results = Query(repeaterCapsule,
2 new Query.Qualifier.RootSubconfig(1, 3),
3 new Query.Labeler.FixedLabelList(”Accuracy”));

The method Query takes three parameters: the first repeaterCapsule is the result of the
CreateChild method which had to be called to create the repeater, the second defines the
qualifier and the third—the labeler. The qualifier RootSubconfig selects the submachines,
that were generated from the subconfiguration of repeater corresponding to path “1, 3”.
The two-element path means that the source configuration is the subconfiguration 3 of
subconfiguration 1 of the repeater. The subconfiguration 1 of the repeater is the configu-
ration of the test scheme (0-based indices are used) and its subconfiguration 3 is the SVM
Classification test. So the qualifier accepts all the machines generated on the basis of the
configuration Classification test taking Classifier input from SVM machine. These are clas-
sification tests, so they put Accuracy to the results repository. The labeler FixedLabelList
of the example, simply describes each selected machine by the object put into the results
repository with label Accuracy. Intemi provides a number of qualifiers and labelers to make
formulating and running miscellaneous queries easy and efficient. As a result we obtain
a series of four descriptions (descriptions of four nodes) containing mappings of the label
Accuracy to the floating point value of the accuracy.

In practice we are usually interested in some derivatives of the collected descriptions, not
in the result series being the output of the query. For this purpose, Intemi provides a number
of series transformations and tools for easy creation of new series transformations. The
transformations get a number of series objects and return another series object. One of the
basic transformations is the BasicStatistics which transforms a series into a single item series
containing the information about minimum, mean, maximum values and standard deviation.
More advanced predefined transformations perform results grouping, ungrouping, mapping
group elements and calculate statistics for hypotheses testing including t-test, Wilcoxon
test, McNemar test etc.

For the purpose of meta-learning we have encapsulated machine qualifier, labeler and
final series transformation into the class of QueryDefinition. Running a query defined by the
three components, in fact means collection of the results according to the qualifier and the
labeler, and transforming the collected series with the transformation to obtain the final
result of interest.
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Task
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Task
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Project 2
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Figure 6: Two projects and two task managers.

3.3 Task Spooling

Before a machine request is fulfilled, i.e. the requested machine is created and its process
run, the request context is equipped with proper task information and the task is pushed
to the task spooler, where it waits for its turn and for a free processing thread. The task
spooler of our system is not a simple standard queue. To optimize the efficiency of task
running, we have introduced a system of hierarchical priorities. Each parent machine can
assign priorities to its children, so that they can be run in proper order. It prevents from
starting many unrelated tasks in parallel i.e. from too large consumption of memory and
computation time. As a result, the spooler has the form of tree containing nodes with
priorities.

Intemi environment delegates machine creation and running machine processes to sep-
arate task management modules. Each project can subscribe to services of any number
of task managers executed either on local or remote computers (see Figure 6). Moreover
subscribing and unsubscribing to task managers may be performed at project run time, so
the CPU power can be assigned dynamically. Each task manager serves the computational
power to any number of projects. Task managers run a number of threads in parallel to
make all the CPU power available to the projects. Each project and each task manager,
presented in Figure 6, may be executed on different computer.

A task thread runs machine processes one by one. When one task is finished, the thread
queries for another task to run. If a task goes into waiting mode (a machine requests some
submachines and waits for them) the task manager is informed about it and starts another
task thread, to keep the number of truly running processes constant.

Machine tasks may need information from another machines of the project (for example
input providers or submachines). In the case of remote task managers, a project proxy
is created to supply the necessary project machines to the remote computer. Only the
necessary data is marshaled, to optimize the information flow.

Naturally, all the operations are conducted automatically by the system. The only duty
of a project author is to subscribe to and unsubscribe from task manager services—each
requires just a single method call.
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3.4 Machine Unification and Machine Cache

In advanced data mining project, it is inevitable that a machine with the same configuration
and inputs is requested twice or even more times. It would not be right, if an intelligent
data analysis system were running the same adaptive process more than once and kept two
equivalent models in memory. Therefore, Intemi introduced machine contexts as formal ob-
jects separate from proper machines. Different contexts may request for the same machine,
and may share the machine.

Constructed machines are stored in machine cache, where they can be kept even after
getting removed from the project. When another request for the same machine occurs, it
can be restored from the cache and directly substituted instead of repeated creation and
running. To achieve this, each machine request is passed to the machine cache, where the
new machine configuration and context are compared to those, deposited in the cache. If
unification is successful, the machine cache provides the machine for substitution.

Another unification possibility occurs between the requests pushed to the task spooler.
Intemi controls unification also at this level preventing from building the same machine
twice.

An illustrative example of machine unification advantages can be a project testing dif-
ferent feature ranking methods. Table 1 shows feature rankings obtained for Wisconsin

Ranking method Feature ranking
F-score 6 3 2 7 1 8 4 5 9
Correlation coefficient 3 2 6 7 1 8 4 5 9
Information theory 2 3 6 7 5 8 1 4 9
SVM 6 1 3 7 9 4 8 5 2
Decision tree (DT), Gini 2 6 8 1 5 4 7 3 9
DT, information gain 2 6 1 7 3 4 8 5 9
DT, information gain ratio 2 6 1 5 7 4 3 8 9
DT, SSV 2 6 1 8 7 4 5 3 9

Table 1: Feature rankings for UCI Wisconsin breast cancer data.

breast cancer data from the UCI repository with eight different methods: three based on
indices estimating feature’s eligibility for target prediction (F-score, correlation coefficient
and entropy based mutual information index), one based on internals of trained SVM model
and four based on decision trees using different split criteria (Gini index, information gain,
information gain ratio and SSV (Grąbczewski and Duch, 2000)). To test a classifier on all
sets of top-ranked features for each of the eight rankings, we would need to perform 72
tests, if we did not control subsets identity. An analysis of the 72 subsets brings a conclu-
sion that there are only 37 different sets of top-ranked features, so we can avoid 35 repeated
calculations.

In simple approaches such repetitions can be easily avoided by proper machine process
implementation, but in complex projects, it would be very difficult to foresee all the re-
dundancies (especially in very complicated meta-learning projects), so Intemi resolves the
problem at the system level by means of machine unification.
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4. Parameter Search Machine

One of the very important features of meta-learning is the facility of optimization of given
machine configuration parameters, for example, the number of features to be selected from
a data table. Parameter optimization may be embedded in the algorithm of given learn-
ing machine or the optimization may be performed outside of the learning machine. In
some cases, from computational point of view, it is more advantageous to realize embedded
optimization—by implementing optimization inside given learning process. However it is
rather rare and in most cases the optimization must not be realized in the embedded form
without loss of complexity and time of optimization.

As presented in previous sections, in so general purpose system, the machine devoted
to optimize parameters of machine configurations must be also very general and ready to
realize different search strategies and must be open to extensions by new search strategies
in feature. The new search strategies are realized as new modules for optimization machine
and extend the possibilities of searching in new directions.

Presented parameters search machine (PSM) can optimize any elements of machine
configuration1. The optimization process may optimize any elements of configuration and
any element of subconfigurations (including subsubconfigurations etc.). Also subelements
of objects in (sub-)configurations can be optimized. This is important, because so often,
machines are very complex and their configurations are complex too, then the elements of
optimization process are sometimes deeply nested in complex structures. Thus, a mecha-
nism of pointing such elements is mandatory in flexible optimization definition. The search
and optimization strategies are realized as separate modules which realize appropriate func-
tionality. Because of that, the search strategies are ready to provide optimization of any
kind of elements (of configurations) even the abstract (amorphic) structures can be opti-
mized. Such structures may be completely unknown for PSM, but given search strategy
knows what to do with objects of given structure. Search strategies provides optimization of
a single or a set of configuration elements during the optimization process. It is important
to notice that in so general system, sometimes even changing simple scalar parameter, the
behavior of machine may change very significantly.

The PSM uses test procedures to estimate the objective functions as the quality test
to help the search strategy undertake the next steps. The definition of such test must be
realized in very open way to enable using of PSM to optimize machines of different kinds
and in different ways.

Such general behavior of MPS was obtained by flexible definition of configuration of MPS
combined with general optimization procedure presented below. Let’s start the description
of configuration of MPS. The MPS configuration consists of (not all elements are obligatory):

Test Template: It determines the type of test measuring influence of the parameters being
optimized to the quality of the resulting model. The test template may be defined in
many different ways and may be defined for different types of problems. The most
typical test used in such case for the classification problems is the cross-validation
test of chosen classifier (sometimes classifier is defined as complex machine). This is
a mandatory part of configuration.

1. It is possible to optimize single or several parameters during optimization, sequentially or in parallel,
depending on used search strategy.
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Path to the final machine: Variable PathToFinalConfigurationInTemplate in the code pre-
sented below, defines a place (a path) of subconfiguration in the test template, which
will become the final configuration machine of MPS. For example, in the case of op-
timizing a classifier this path will point to the classifier in the test template and after
optimization process based on configuration pointed by this path in final configura-
tion, the final configuration of classifier will be extracted, and finally the MPS will
play the role of the classifier (which means that this classifier will be an output of the
MPS on finish). This parameter is not obligatory. If this parameter is not defined in
configuration of MPS, the MPS will return just the final (optimized) configuration as
the result of the optimization procedure.

Query definition: For each machine configuration created in the optimization procedure
(see below) the quality test must be computed to advise further process of optimization
and final choice of configuration parameters. The query is realized exactly as it was
presented in Section 3.2. The test template (for example cross-validation) will produce
several submachines with some results like accuracy, which describe the quality of
each subsequent test. The query definition specifies which machines (the machine
qualifier) have to be asked for results and which labels (the machine labeler) provides
interesting values to calculate the final quantity. As a result, series of appropriate
values are constructed. The last element of query definition defines how to calculate
the result-quantity (single real value) on the basis of previously obtained series of
values. Query definition is obligatory in MPS configuration.

Scenario or ConfigPathToGetScenario: These are two alternative ways to define the
scenario (i.e. the strategy) of parameter(-s) search and optimization. Either of them
must be defined. If the scenario is defined, then it is a direct scenario is defined
directly. If the path is defined, it points the configuration which is expected to support
auto-reading of the default scenario for this type of configuration.

The scenario defined within the configuration of PSM determines the course of the
optimization process. Our system contains a number of predefined scenarios and new ones
can easily be implemented. The main, obligatory functionalities of the scenarios are:

SetOptimizationItems: each scenario must specify which element(-s) will be optimized.
The items will be adjusted and observed in the optimization procedure. This func-
tionality is used at the configuration time of the scenario, not in the optimization
time.

NextConfiguration: subsequent calls return the configurations to be tested. The PSM,
inside the main loop, calls it to generate a sequence of configurations. Each gen-
erated configuration is additionally commented by the scenario to enable further
meta-reasoning or just to inform about the divergence between subsequent config-
urations. The method NextConfiguration returns a boolean value indicating whether a
new configuration was provided or the scenario stopped the process of providing next
configurations (compare line 8 of the code of MPS shown below).

RegisterObjective: scenarios may use the test results computed for generated configu-
rations when generating next configurations. In such cases, for each configuration
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provided by the scenario, the MPS, after the learning process of such task, runs the
test procedure, and the value of the quality test is passed back to the scenario (com-
pare above comments on Query definition and line code 12) to inform the optimization
strategy about the progress.

High flexibility of the elements of MPS, described above, enable creation of optimization
algorithm in relatively simple way, as presented below.

4 function MetaParamSearch(TestTemplate, Scenario,
5 PathToFinalConfigurationInTemplate, QueryDefinition);
6 Scenario.Init(TestTemplate);
7 ListOfChangeInfo = {};
8 while (Scenario.NextConfiguration(config, changes))
9 {

10 t = StartTestTask(config);
11 qt = computeQualityTest(t, QueryDefinition);
12 Scenario.RegisterObjective(config, qt);
13 ListOfChangeInfo.Add(<qt, changes>);
14 RemoveTask(t);
15 }
16 if (defined PathToFinalConfigurationInTemplate)
17 {
18 confM = config.GetSubconfiguration(
19 PathToFinalConfigurationInTemplate);
20 c = CreateChildMachine(confM);
21 SetOutput(c);
22 }
23 return <config, ListOfChangeInfo>;
24 end

In line 6 the scenario is initialized with the configuration to be optimized. It is important
to note that the starting point of the MPS is not a default configuration of given machine
type but strict configuration (testing template with strict configuration of adjustable ma-
chine) which may be a product of another optimization. As a consequence, starting the
same MPS machine with different optimized configurations may finish in different final
configurations—for example tuning of the SVM with linear kernel or tuning of the SVM
with Gaussian kernel finish in completely different states.

Every configuration change is commented by the chosen scenario. This is useful in
further analysis of optimization results—see line 7.

The main loop of MPS (line 8) works as long as any new configuration is provided
by the scenario. When NextConfiguration returns false, the variable config holds the final
configuration of the optimization process and this configuration is returned by the last
line of the MPS code. After a new configuration is provided by the scenario, a test task
is started (see line 10) to perform the test procedure, for example the cross-validation
test of a classifier. After the test procedure, the QueryDefinition is used to compute the
quality test. The quality test may be any type of attractiveness measure (attractiveness ≡
reciprocal of error). For example the accuracy or negation of the mean squared error. The
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resulting quality is sent to the scenario, to inform it about the quality of the configuration
adjustments (line 12). Additionally, the resulting quality value and the comments on the
scenario’s adjustments are added to the queue ListOfChangeInfo.

Finally the test task is removed and the loop continues.

When the PathToFinalConfigurationInTemplate is configured, the MPS builds the ma-
chine resulting from the winner configuration—see code lines 16–22. The type of the
machine is not restricted in any way—it depends only on the configuration pointed by
PathToFinalConfigurationInTemplate.

The MPS algorithm finishes by returning the final (the best) configuration and the
comments about the optimization process.

4.1 Examples of Scenarios

Intemi provides a number of predefined scenarios. At any time, the system may be extended
by new scenarios. Below, we present some simple, not nested scenarios and then, more
complex, nested ones.

The most typical scenario, used for optimization of many learning machines’ parame-
ters, is the StepScenario based on quite simple idea to optimize single chosen element of
a configuration. Such element is defined (not only in the case of that scenario) by two
paths which constitute the scenario configuration. The first is the subconfiguration path,
which goal is to define in which (sub-)configuration the optimization parameter lies (at
any depth). When the path is empty, it points the main configuration. The second path
is the property path, pointing (in configuration pointed by first path) to the property (or
sub-sub-. . . property) which is the element to be optimized. The property path may not
be empty (something must be pointed!). The search strategy is very simple, it generates
configurations with the element set to values from a sequence defined by start value, step
value and the number of steps. Step-type of StepScenario may be linear, logarithmic or ex-
ponential. This is very convenient because of different behaviors of configuration elements.
This scenario may be used with real or integer value type. It may optimize, for example,
the number of selected features (for feature selection machine) or the SVM’s C parameter
or the width of the Gaussian kernels.

The SetScenario is powerful in the cases, when the optimized parameter is not continu-
ously valued. It can be used with every enumerable type (including real or integer). Because
this scenario is type independent, the examples of using it are quite diverse. In the case of
k nearest neighbors, the metric parameter may be optimized by setting the configuration
of metric to each of the elements of a set of metrics, for example the set of Euclidean,
Manhattan and Chebyshev metrics. In cases where a few fixed values should be checked
as the values of given configuration element, the step scenario may be configured to the
fixed set of values, for example: 2, 3, 5, 8, 13, 21. The determination of the optimization
parameter is done in the same way as in the case of StepScenario: by two paths which point
the subconfiguration and the subproperty.

SetAndSetSubScenario is, in some way, a more general version of the previous scenario.
It also checks a set of enumerable values attached to given configuration element, but
additionally it is able to start sub-scenario declared for all or selected values from the
mentioned enumerable set. Configuration of this scenario consists of a set of pairs: <
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valuek, scenariok >. For each pair, an element of configuration is set to value1 and the
subscenario is started to optimize another element of configuration by scenario1, if only
scenario1 is not null. The scenario can be used, for example, to chose metric (between
some metric from a set as before) and, in the case of Minkovsky metric, additionally tune
(via nested scenario) the parameter which represents the power in the Minkovsky metric.

Another very useful scenario is the StackedScenario which facilitates building a sequence
or a combination of scenarios. This scenario may be used in one two modes. The first
mode, the sequence mode, enables starting scenarios one by one, according to the order in
the sequence. In the grid mode each value generated by the first scenario is tried against
each value provided by second scenario and so on. For example, assume that we need to
optimize the C parameter of the SVM and also the width of the Gaussian kernel. Using
the sequence mode it is possible to optimize the C first, and after that, the width or in the
reversed order. Also, it is possible to optimize the C first, then the width and then again
the C, and so on. In grid mode, every pair of parameters will be checked (every C against
every width). In general, the grid may be composed of more than two scenarios, then such
scenario will try each triple, each four and so on. Note that the stacked scenario may be
composed of any scenarios, including stacked scenario or set scenario, however too complex
optimizations are not recommended because of growing complexity.

SimpleMaximumScenario may be used to look for maximum, assuming the single max-
imum problem (or looking for local minimum), observing the quality test returned to the
scenario. When using this scenario it is recommended to put a limit on the number of steps
beside the limit on progress of optimization. Of course this scenario may be extended in
several simple ways to more sophisticated versions.

4.2 Auto-scenario

If the optimization of given machine or its single chosen parameter is to be performed typ-
ically it is done, in most cases, in the same way. This suggests that it is not necessary (and
not recommended) to rediscover the method of parameters tuning in each optimization of
given machine. The auto-scenarios is the idea to ,,dedicate” the behavior of optimization
for configuration parameters and whole learning machines. In the presented system it is
done using the scenario-comment attributes which define the default way of optimization.
Scenario-comments are used with configuration elements and also with the whole configu-
rations of learning machines. The difference is that, for the whole machine, it is responsible
for optimization of the whole machine configuration in possibly best way, while for single
configuration elements it is responsible to optimize the pointed element of configuration
without any change of other elements.

Such idea of auto-scenarios is very convenient, because it simplifies the process of op-
timization without loss of quality. Nobody is obliged to know the optimal way of param-
eter optimization for all machines. The scenario comments compose a brilliant base of
meta-knowledge created by experts—using auto-scenarios, meta-learning does not have to
rediscover the optimal way of optimization of each particular machine. In meta-learning
auto-scenarios are used together with machine generators to auto-generate optimization
strategies of chosen machine configuration. It is also possible to define a few default op-
timization ways for one machine. This enables using a simpler and a deeper optimiza-
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Figure 7: A meta parameter search project configuration.

tion scenarios and depending on the circumstances, one may be chosen before the other.
Auto-scenarios can be attached to any machines, both the simple ones and the complex
hierarchical ones.

4.3 Parameter Search and Machine Unification

As mentioned in the preceding section, machine unification is especially advantageous in
meta-learning. Even one of the simplest meta-learning approaches, a simple meta parameter
search, is a good example. Imagine a project configuration depicted in Figure 7, where the
MPS machine is designed to repeat 5 times 2-fold CV of the test template scenario for
different values of the SVM C and kernel σ parameters. Testing the C parameter within
the set {2−12, 2−10, . . . , 22} and σ within {2−1, 21, . . . , 211} we need to perform the whole
5×2 CV process 8×7 times. As enumerated in Table 2, such a project contains (logically)

Machine logical count physical count
Data loader 1 1
Meta parameter search 1 1

Repeater 56 56
Distributor scheme 280 5

CV distributor 280 5
Test scheme 560 560

Standardization 560 10
External transformation 560 10
SVM 560 560

Kernel provider scheme 560 80
Kernel provider 560 80

Classification test 560 560
Sum 4538 1928

Table 2: Numbers of machines that exist in the project logically and physically.
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4538 machines. Thanks to the unification system, only 1928 different machines are created
saving both time and memory. The savings are possible, because we perform exactly the
same CV many times, so the data sets can be shared and also the SVM machine is built
many times with different C parameters and the same kernel σ, which facilitates sharing
the kernel tables by quite large number of SVM machines.

5. Meta-learning Algorithm Elements

This section provides description of all the parts of the presented meta-learning algorithm.
First, machine configuration generators, which represent and define the functional form of
meta-learning search space, are described. Next, a clear distinction between the configu-
ration of the algorithm and the main part of the algorithm is stated. After that, other
elements of the main part of the algorithm will be presented.

5.1 Machine Configuration Generators and Generators Flow

In the simplest way, the machine space browsed by meta-learning may be realized as a
set of machine configurations. However such solution is not flexible and strongly limits
the meta-learning possibilities to fixed space. To overcome this disadvantage the machine
configuration generators (MCG) are introduced.

The main goal of MCGs is to provide/produce machine configurations. Each meta-
learning may use several machine configuration generators nested in a generators flow
(a graph of generators). Each MCG may base on different meta-knowledge, may reveal
different behavior, which in particular may even change in time (during the meta-learning
progress). The simplest generators flow is presented in Figure 8.

Simplest generators flow

output

Classifiers set
Generator

Figure 8: Example of simplest generator flow.

Each generator provides machine configurations through its output. Generators may also
have one or more inputs, which can be connected to outputs of other generators, similarly
to machines and their inputs and outputs. If the output of generator A is connected to an
input number 3 of generator B, then every machine configuration generated by the generator
A will be provided to the input 3 of the generator B. If a generator output is attached to
more inputs, then each of the inputs will receive the output machine configurations.

The inputs-outputs connections between generators, compose a generators flow graph,
which must be a directed acyclic graph. A cycle would result in infinite number of machine
configurations. Some of the outputs of generators can be selected as the output of the
generators flow—the providers of configurations to the meta-learning. In the run time
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of the meta-learning algorithm, the configurations returned by the generators flow, are
transported to a special heap, before the configured machines are tested.

The streams of configurations provided by generators may be classified as fixed or non-
fixed. Fixed means that the generator depends only on its inputs and configuration. The
non-fixed generators depend also on the learning progress (see the advanced generators
below).

Another important feature of generators is that, when a machine configuration is pro-
vided by a generator, information about the origin of configuration and some comments
about it are attached to the machine configuration. This is important for further meta-
reasoning. It may be useful to know information on how the configuration was created in
further meta-reasoning.

In general, generators behavior is not limited except the fact, that they should provide
a finite series of configurations. Below we describe some generators examples.

5.1.1 Set-based Generators

The simplest and very useful machine generator is based on the idea to provide just an
arbitrary sequence of machine configurations (thus the name set-based generator). Usually,
it is convenient to have a few set-base generators in single generators flow—a single set per
a group of machines of similar functionality like feature rankings or classifiers. An example
of set-base generator providing classifier machine configurations was presented in Figure 8.

5.1.2 Template-based Generators

Template-based generators are used to provide complex configurations based on given ma-
chine configuration template (described in Section 3.1) and generators connected to them.
For example, if a meta-learner is to search through combinations of different data transform-
ers and kNN classifier, it can easily do it with a template-based generator. The combinations
may be defined by a machine template with a placeholder for data transformer and fixed
kNN classifier. Such a template-based generator may be connected to a set-based generator
with a sequence of data transformations, which would make the template-based generator
provide a sequence of complex configurations resulting from replacing the placeholder with
subsequent data transformation configurations. Please, note that, in the example, the ma-
chine template is to play the role of a classifier. Because of that, we can use the Transform
and Classify machine template shown in Figure 9 on the left. This machine learning process
starts with learning the data transformation first and then the classifier.

The generator’s template may contain more than one placeholder. In such a case the
generator needs more than one input. The number of inputs must be equal to the number
of placeholders. The role of a placeholder is defined by its inputs and outputs declarations.
So, it may be a classifier, approximator, data transformer, ranking, committee, etc. Of
course the placeholder may be filled with complex machine configuration too.

Replacing the kNN from the previous example by a classifier placeholder (compare
Figure 9 on the right), we obtain a template that may be used to configure a generator with
two inputs. One designated for a stream of transformers, and the other one for a stream of
classifiers.
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Figure 9: A Transform and classify machine configuration template. LEFT: placeholder for
transformer and fixed classifier (kNN). RIGHT: two placeholders, one for the
transformer and one for the classifier

The template-base generator can be configured in one of two modes: one-to-one or all-
to-all. In the case of the example considered above, mode ’one-to-one’ makes the template-
based generator get one transformer and one classifier from appropriate streams and put
them into the two placeholders to provide a result configuration. The generator repeats
this process as long as both streams are not empty. In ’all-to-all’ mode the template-based
generator combines each transformer from the stream of transformers with each classifier
from the classifiers stream to produce result configurations..

Figure 10 presents a simple example of using two set-based generators and one template-
based generator. The set-based generators provide transformers and classifiers to the two

Simple generators flow

output

Classifiers set
Generator

Transformers set
Generator

Transform and
classify machine
Generator

Figure 10: A simple generator flow.

inputs of the template-based generator, which puts the configurations coming to its inputs to
the template providing fully specified configurations. Different mixtures of transformations
and classifiers are provided as the output, depending on the mode of the generator: one-
to-one or all-to-all. Please, note that the generator’s output gets configuration for both the
set-based classifiers generator and the template-based generator, so it will provide both the
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classifiers taken directly from the proper set and the classifiers preceded by the declared
transformers.

Another interesting example of a template-based generator is an instance using a tem-
plate of ParamSearch machine configuration (the ParamSearch machine is described in Sec-
tion 4). The template containing test scheme with a placeholder for a classifier is very useful
here. When the input of the template-based generator is connected to a stream of classifiers,
the classifiers will fill the placeholder, producing new configurations of the ParamSearch ma-
chine. Configuring the ParamSearch machine to use the auto-scenario option makes the
meta-learner receive configurations of ParamSearch to realize the auto-scenario for given
classifier. It means that such a generator will provide configurations for selected classifiers
to auto-optimize their parameters.

An more complex generator flow using the generators presented above, including template-
based generator with ParamSearch machine is presented in Figure 11. This generator flow
contains three set-based generators, which provide classifiers, transformers and ranking con-
figurations to other (template-based) generators. Please, see that the classifier generator

Generators flow

flow output

Transformer
Generator

Ranking
Generator

Classifiers
Generator

Feature Selection
of Rankings
Generator

Transform and
Classify Generator II

Transform and
Classify Generator

MPS/FS of
Transform & Classify
Generator

MPS for Classifiers
Generator

Figure 11: Example of generators flow.

sends its output configurations directly to the generator flow output and additionally to
three template-based generators: two combining transformations with classifiers and the
ParamSearch generator (MPS for Classifiers Generator). It means that each classifier con-
figuration will be send to the meta-learning heap and additionally to other generators to
be nested in other configurations (generated by the Transform and Classify and the MPS
generators).

The two Transform and Classify generators combine different transformations with the
classifiers obtained from the Classifiers Generator. The configurations of transformation
machines are received by proper inputs. It is easy to see, that the first Transform and
Classify generator uses the transformations output by the Transformer Generator while the
second one receives configurations from another template-based generator which generated
feature selection configurations with the use of different ranking algorithms received through
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the output-input connection with the Ranking Generator. The combinations generated by
the two Transform and Classify generators are also sent to the meta-learning heap through
the output of the generators flow.

Additionally, the Transform and Classify Generator II sends its output configurations
to the ParamSearch generator (MPS/FS of Transform & Classify generator). This gener-
ator produces ParamSearch configurations, where the number of features is optimized for
configurations produced by the Transform and Classify Generator II. The output of the
ParamSearch generator is passed to the output of the generators flow too.

In such a scheme, a variety of configurations may be obtained in a simple way. The
control of template-based generators is exactly convergent with the needs of meta-search
processes.

There are no a priori limits on the number of generators and connections used in gen-
erator flows. Each generator flow may use any number of any kind of generators. In some
cases it is fruitful to separate groups of classifiers in independent set-based generators to
simplify connection paths in the generators flow graph. The same conclusion is valid also for
transformations which grouped into separate sets may facilitate more flexibility, for example
when some machines have to be preceded by a discretization transformation or should be
used with (or without) proper filter transformations.

5.1.3 Advanced Generators

Advanced generators are currently under development. Their main advantage, over the
generators mentioned above, is that they can make use of additional meta-knowledge. A
meta-knowledge, including the experts’ knowledge, may be embedded in a generator for
more intelligent filling of placeholders in the case of template-based generators. For example,
generators may know that given classifier needs only continuous or discrete features.

Advanced generators are informed each time a test task is finished and analyzed. The
generators may read the results computed within the test task and the current machine
configuration ranking (compare code line 67 in Section 5.5). The strategy enables providing
machine configurations derived from an observation of the meta-search progress. Advanced
generators can learn from meta-knowledge, half-independently of the heart of the meta-
learning algorithm, and build their own specialized meta-knowledge. It is very important
because the heart of meta-learning algorithm can not (and should not) be responsible for
specific aspects of different kind of machines or other localized type of knowledge.

5.2 Configuring Meta-learning Problem

It is crucial to see the meta-learning not as a wizard of everything but as a wizard of
consistently defined meta-learning task. The meta-learning does not discover the goal itself.
The meta-learning does not discover the constraints on the search space. Although the
search space may be adjusted by meta-learning. To define a meta-learning algorithm that
can be used for different kinds of problems and that can be adjusted not by reimplementing
but through configuration changes, it must be designed very flexibly.
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5.2.1 Stating of Functional Searching Space

A fundamental aspect of every meta-learning is determination of the search space of learn-
ing machines. The simplest solution is just a set of configurations of learning machines.
Although it is acceptable that the configurations can be modified within the meta-learning
process, a single set of configurations still offers strongly limited possibilities. A functional
form of configurations of learning machines is much more flexible. This feature is realized
by the idea of machine configuration generators and the machine generators flow described
in Section 5.1. Using the idea of machine configuration generators and their flows, defin-
ing the search space for meta-learning is much more powerful and intuitive. One of the
very important features is, that generators may describe non-fixed spaces of configurations.
This means that the space may continuously evolve during the meta-search procedure. The
graph of generators may be seen as continuously working factory of machine configurations.
Defining meta-search space by means of machines generators fulfill all or almost all the
needs of applications to miscellaneous types of problems.

5.2.2 Defining the Goal of Meta-learning

Another very important aspect of configuration of a meta-learner is the possibility of strict
and flexible definition of the goal. In the context of our general view of MLA (please
look back at Figure 1), we focus on the step start some test tasks. Creation of test tasks
is not learning a machine according to the chosen configuration, but preparation of the
test procedure of the chosen configuration. From technical point of view, it is nothing
else than building another complex machine configuration, performing the test procedure
i.e. validating the chosen machine configuration. This is why the definition of the test
procedure may be encapsulated in a functional form of machine configuration template
(compare Section 3.1) with nested placeholder for chosen configuration to be validated.
The meta-learning takes the test machine template, fills the placeholder with the chosen
machine configuration and starts the test task. For example, when the MLA is to solve
a classification problem, a classifier test must be defined as the test machine template—in
particular it may be the commonly used repeated cross-validation test.

After normal finish of a test task the MLA needs to evaluate the results i.e. to determine
a quantity estimating, in some way, the quality of the test results. When the test task is
finished, the MLA has the possibility to explore it. The test task has a form of a tree of
machines (compare Figure 3). In our approach, to compute the quality of the results it is
necessary to define:

• which nodes of the machine tree preserve the values with the source information for
computing the quality-test,

• which values at given nodes are the source of required information,

• how to use the values collected from the tree to measure the quality of given test.

And this is exactly the same information type as those presented in Section 3.2, where
to define a query we had to define: the root machine (the root of the tree to search—
the test machine in this case), qualifier which selects the nodes of the tree containing the
information, the labeler which describes the selected nodes with labels corresponding to the
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desired values and the series transformation, which determines the final value of the quality
estimate. The example of a query, presented in Section 3.2, clearly shows that it is a simple
and minimal mean to compute qualities of given test tasks. Thanks to such a form of the
quality test definition, the MLA can be simply adapted to very different types of quality
tests, independently from the problem type.

5.2.3 Defining the Stop Condition

Another important part of the MLA configuration is the specification, when to stop. The
stop condition can be defined in several ways, for example:

• stop after given real time limit,

• stop when given CPU time limit is achieved,

• stop after given real time limit or no important progress in the quality test is observed
for given amount of time (defined by progress threshold and progress tail length).

Of course the meta-learning may be stopped in other ways—by implementing another stop-
function. An interesting extension may be intelligent stop functions, i.e. functions, which
make use of meta-knowledge in their decisions.

5.2.4 Defining the Attractiveness Module

If the attractiveness module is defined, then the corrections to the complexity of machines
will be applied, to give additional control of the order of tests in the machine space explo-
ration. It is described in more detail in Section 6.1.

5.2.5 Initial Meta-knowledge.

A meta-knowledge is almost always passed to the MLA by means of the configuration items
such as the machine configuration generators, the attractiveness module or the complexity
computation module. It is very important include appropriate meta-information at the
initialization stage of the search process, since it may have very important influence on the
results of the meta-learning search.

Summing up the above section, beside the attractiveness module, all the configuration
elements, explained above, compose the minimal set of information to realize the meta-
learning search. It is impossible to search in undefined space or search without strictly
defined goal. All the parts of the configuration can be defined in very flexible way. At the
same time, defining the search space by the machine configuration generators, specifying
the goal by the query system, determining the stop condition, are also quite simple and
may be easily extended for more sophisticated tasks.

5.3 Initialization of Meta-learning Algorithm

The general scheme of Figure 1, can be written in a simple meta-code as:

25 procedure Meta learning;
26 initialization;
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27 while(stopCondition != true)
28 {
29 start tasks if possible
30 wait for finished task or break delayed task
31 analyze finished tasks
32 }
33 finalize;
34 end

At the initialization step, the meta-learning is set up in accordance to the configuration.
Among others, the goal (testing machine template and query definition) and search space
and the stop-condition of meta-learning are defined. The machine search space is determined
by machine configuration generators embedded in a generator flow. See lines 36–41 in the
code below.

The machinesRanking serves as the ranking of tested machines according to the quality
test results obtained by applying the queryDefinition to the test task. machinesRanking keeps
information about the quality of each configuration, and about their origin (it is necessary
to understand how it was evolving). The heap named machinesHeap (line 44) will keep
machine configurations organized according the complexity i.e. will decide about the order
of test tasks starting. The machineGeneratorForTestTemplate is constructed as a machine
generator based on the testing template. The goal of using this generator is to nest each
machine configuration provided by the generators flow inside the testing machine template
(see line 46) which is then passed through the machineHeap to start, and later to test
the quality of provided machine. This is why machineGeneratorForTestTemplate has to be
connected to the machinesHeap (line 47).

35 procedure Initialization;
36 read configuration of ML and
37 set machineGeneratorsFlow
38 set testingTemplate
39 set queryDefinition
40 set stopCondition
41 set attractivenessModule
42 machinesRanking = {};
43 priority = 0;
44 machinesHeap = {};
45 machineGeneratorForTestTemplate =
46 MachineGenerator(testingTemplate);
47 machineGeneratorForTestTemplate.ConnectTo(machinesHeap);
48 end

5.4 Test Tasks Starting

Candidate machine configurations are passed through a heap structure (machineHeap), from
which they come out in appropriate order, reflecting machine complexity. The heap and
complexity issues are addressed in detail, in Section 6. According to the order decided within
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the heap, procedure start tasks if possible, sketched below, starts the simplest machines
first and than more and more complex ones.

49 procedure startTasksIfPossible;
50 while (¬ machinesHeap.Empty() ∧ ¬ mlTaskSpooler.Full())
51 {
52 <mc, cmplx> = machinesHeap.ExtractMinimum();
53 timeLimit = τ · cmplx.time / cmplx.q
54 mlTaskSpooler.Add(mc, limiter(timeLimit), priority−−);
55 }
56 end

Tasks are taken from the machinesHeap, so when it is empty, no task can be started.
Additionally, the task-spooler of meta-learning must not be full. MLAs use the task spooler
described in Section 3.3 but via additional spooler which controls the width of the beam of
tasks waiting for run.

If the conditions to start a task (line 50 of the code) are satisfied, then a pair of ma-
chine configuration mc and its corresponding complexity description cmplx is extracted from
machinesHeap (see line 52).

As commented above, the complexity is approximated for given configuration. Since it
is only an approximation, the meta-learning algorithm must be ready for cases when this
approximation is not accurate or even the test task is not going to finish (according to the
halting problem or problems with convergence of learning). To bypass the halting problem
and the problem of (the possibility of) inaccurate approximation, each test task has its own
time limit for running. After the assigned time limit the task is aborted. In line 53 of the
code, the time limit is set up according to predicted time consumption (cmplx.time) of the
test task and current reliability of the machine (cmplx.q). The initial value of the reliability
is the same (equal to 1) for all the machines, and when a test task uses more time than the
assigned time limit, the reliability is decreased (it can be seen in the code and its discussion
presented in Section 5.5). τ is a constant (in our experiments equal to 2) to protect against
too early test task braking.

The time is calculated in universal seconds, to make time measurements independent
of the type of computer on which the task is computed. The time in universal seconds is
obtained by multiplication of the real CPU time by a factor reflecting the comparison of the
CPU power with a reference computer. It is especially important when a cluster of different
computers is used.

Each test task is assigned a priority level. The MLAs use the priorities to favor the tasks
that were started earlier (to make them finish earlier). Therefore the tasks of the smallest
complexity are finished as first. Another reason of using the priority (see code line 54) is to
inform the task spooler (compare Section 3.3) to favor not only the queued task but also
each child machine. This is very important, because it saves memory resources. In the case
of really complex machines which MLAs have to deal with, it is crucial.

The while loop in line 50 saturates the task spooler. This concept works in harmony
with the priority system, yielding a rational usage of memory and CPU resources.

It is a good place to point out, that even if the generators flow provides a test task
which has already been provided earlier, it will not be calculated the next time. Thanks to
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the unification engine, described in Section 3.4, the machine cache keeps all the computed
solutions (if not directly in RAM memory, then in a disc cache). Of course, it does not mean
that the generators flow should not care for the diversity of the test tasks configurations.
The machine cache is also important to save time when any sub-task is requested repeatedly.

5.5 Analysis of Finished Tasks

After starting apropriate number of tasks, the MLA is waiting for a task to finish (compare
the first code in Section 5.3). A task may finish normally (including termination by an
exception) or halted by time-limiter (because of exceeding the time limit).

57 procedure analyzeFinishedTasks;
58 foreach (t in mlTaskSpooler.finishedTasks)
59 {
60 mc = t.configuration;
61 if (t.status = finished normally)
62 {
63 qt = computeQualityTest(t, queryDefinition);
64 machinesRanking.Add(qt, mc);
65 if(attractivenessModule is defined)
66 attractivenessModule.Analyze(t, qt, machinesRanking);
67 machineGeneratorsFlow.Analyze(t, qt, machinesRanking);
68 }
69 else // task broken by limiter
70 {
71 cmplx = mc.cmplx;
72 cmplx.q = cmplx.q / 4;
73 machinesHeap.Quarantine(mc);
74 }
75 mlTaskSpooler.RemoveTask(t);
76 }
77 end

The procedure runs in a loop, to serve all the finished tasks as soon as possible (also
those finished while serving other tasks.

When the task is finished normally, the quality test is computed basing on the test task
results (see line 63) extracted from the project with the query defined by queryDefinition.
As a result a quantity qt is obtained. The machine information is added to the machines
ranking (machinesRank) as a pair of quality test qt and machine configuration mc.

Later, if the attractiveness module is defined (see lines 65–66), it gets the possibility
to analyze the new results and, in consequence, may change the attractiveness part of ma-
chines complexities. In this way, the MLA may change the complexity of machines already
deposited in the heap (machinesHeap) and the heap is internally reorganized according to
the new complexities (compare Eq. 7). Attractiveness modules may learn and organize
meta-knowledge basing on the results from finished tasks.

Next, the generators flow is called (line 67) to analyze the new results. The flow passes
the call to each internal generator to let the whole hierarchy analyze the results. Gener-
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ators also may learn by observation of results to provide new, more interesting machine
configurations (only in the case of advanced generators).

When a task is halted by time-limiter, the task is moved to the quarantine for a period
not counted in time directly but determined by the complexities. Instead of constructing
a separate structure responsible for the functionality of a quarantine, the quarantine is
realized by two naturally cooperating elements: the machines heap and the reliability term
of the complexity formula (see Eq. 7). First, the reliability of the test task is corrected—see
code line 72, and after that, the test task is resend to the machine heap as to quarantine—
line 73. The role of quarantine is very important and the costs of using the quarantine are,
fortunately, not too big. MLAs restart only these test task for which the complexity was
badly approximated. To better see the costs, assume that the time complexity of a test task
was completely badly approximated and the real universal time used by this task is t. In
the above scheme of the quarantine, the MLA will spend, for this task, a time not greater
than t + t + 1

4 t + 1
16 t + . . . = 7

3 t. So the maximum overhead is 4
3 t, however it is the worst

case—the case where we halt the process just before it would be finished (hence the two t’s
in the sum). The best case gives only 1

3 t overhead which is almost completely insignificant.
The overhead is not a serious hamper, especially, when we take to the account that the
MLA with the quarantine is not affected by the halting-problem of test-task. Moreover,
the cost estimation is pessimistic also from another point of view: thanks to the unification
mechanism, each subsequent restart of the test may reuse significant number of submachines
run before, so in practice, the time overhead is usually minimal.

5.6 Meta-learning Results Interpretation

The final machine ranking returned by meta-learning may be interpreted in several ways.
The first machine configuration in the ranking is the best one according to the measure
represented by queryDefinition.

But the runners-up may not be significantly worse. Using statistical tests, like McNem-
mar test, a set of machines of insignificant quality differences, can be caught. Next, the
final solution may be chosen according to another criterion, for example, the simplest one
from the group of the best solutions or the one with the smallest variance etc.

The results may be explored in many different ways as well. For example, one may be
interested in finding solutions using alternative (to the best machine) feature sets or using
the smallest number of features or instances (in the case of similarity based machines), etc.
Sometimes, comprehensive models may be preferred, like decision trees, if only they work
sufficiently well.

In some cases it may be recommended to repeat some tests, but with little “deeper”
settings analysis, before the final decision is made.

During the results ranking analysis, the commentary parts2 of the results can also be
used as a fruitful information to support the choice.

2. Parts with information about derivation of configuration and other comments on quality test.
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6. Machine Complexity Evaluation

Since the complexity has to determine the order of performing test tasks, its computation
is extremely important. The complexity can not be computed from learning machines,
but from configurations of learning machines and descriptions of their inputs, because the
information about complexity is needed before the machine is ready for use. In most
cases, there is no direct analytical way of computing the machine complexity on the basis
of its configuration. Therefore, we introduce an approximation framework for automated
complexity approximation.

6.1 Complexity in the Context of Machines

The Kolmogorov complexity definition is not very useful in real tasks especially in computa-
tional intelligence problems. The problem of finding a minimal program is unsolvable—the
search space of programs is unlimited and the time of program execution is unlimited. In
the case of Levin’s definition (Eq. 3) it is possible to realize the Levin Universal Search
(LUS) (Jankowski, 1995; Li and Vitányi, 1993) but the problem is that this algorithm is
NP-hard. This means that, in practice, it is impossible to find an exact solution to the
optimization problem.

The strategy of meta-learning is different than the one of LUS. Meta-learning uses the
functional definition of the search space, which is not infinite, in the finite meta-learning
process. This means that the search space is, indeed, strongly limited. The generators flow
is assumed to generate machine configurations which are “rational” from the point of view
of given problem P. Such solution restricts the space to the most interesting algorithms
and makes it strictly dependent on the configuration of the MLA.

In our approach to meta-learning, the complexity controls the order of testing machine
configurations collected in machine heap. Ordering programs only on the basis of their
length (as it was defined in Kolmogorov Eq. 2) is not rational. The problem of using
Levin’s additional term of time, in real applications, is that it is not rigorous enough in
respecting time. For example, a program running 1024 times longer than another one may
have just a little bigger complexity (just +10) when compared to the rest (the length). This
is why we use the following definition, with some additions described later:

ca(p) = l(p) + tp/ log(tp). (5)

Naturally, we use an approximation of the complexity of a machine, because the actual
complexity is not known before the real test task is finished. The approximation method-
ology is described in Section 6. Because of this approximation and because of the halting
problem (we never know whether given test task will finish) an additional penalty term is
added to the above definition:

cb(p) = [l(p) + tp/ log(tp)]/q(p), (6)

where q(p) is a function term responsible for reflecting an estimate of reliability of p. At
start the MLAs use q(p) = 1 (generally q(p) ≤ 1) in the estimations, but in the case when
the estimated time (as a part of the complexity) is not enough to finish the program p
(given test task in this case), the program p is aborted and the reliability is decreased.
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The aborted test task is moved to a quarantine according to the new value of complexity
reflecting the change of the reliability term. This mechanism prevents from running test
tasks for unpredictably long time of execution or even infinite time. Otherwise the MLA
would be very brittle and susceptible to running tasks consuming unlimited CPU resources.
More details on this are presented in Section 5.4.

Another extension of the complexity measure is possible thanks to the fact that MLAs
are able to collect meta-knowledge during learning. The meta-knowledge may influence the
order of test tasks waiting in the machine heap and machine configurations which will be
provided during the process. The optimal way of doing this, is adding a new term to the
cb(p) to shift the start time of given test in appropriate direction:

cm(p) = [l(p) + tp/ log(tp)]/[q(p) · a(p)]. (7)

a(p) reflects the attractiveness of the test task p.

6.1.1 Complexities of What Machines are We Interested in?

As described in Section 5.3, the generators flow provides machine configurations to
machineGeneratorForTestTemplate and after nesting the configurations inside the test tem-
plate, the whole test configurations are sent to the machinesHeap. The machinesHeap uses
the complexity of the machine of given configuration, as the priority key. It is not accidental,
that the machine configuration which comes to the machinesHeap is the configuration of the
whole test machine (where the proposed machine configuration is nested). This complexity
really well reflects complete behavior of the machine: a part of the complexity formula
reflects the complexity of learning of given machine and the rest reflects the complexity of
computing the test (for example classification or approximation test). The costs of learning
are very important, because trivially, without learning there is no model. The complexity
of the testing part is also very important, because it reflects the simplicity of further use
of the model. Some machines learn quickly and require more effort to make use of their
outputs (like kNN classifiers), while others learn for a long time and after that may be
very efficiently exploited (like many neural networks). Therefore, the test procedure should
be as similar to the whole life cycle of a machine as possible (and of course as trustful as
possible).

To understand the needs of complexity computing we need to go back to the task of
learning. To provide a learning machine, regardless of whether it is a simple one, a complex
machine or a machine constructed to help in the process of analysis of other machines, its
configuration and inputs must be specified (compare Section 3). Complexity computation
must reflect the information from configuration and inputs. The recursive nature of config-
urations, together with input–output connections, may compose quite complex information
flow. Sometimes, the inputs of submachines become known just before they are started, i.e.
after the learning of other machines3 is finished. This is one of the most important reasons
why determination of complexity, in contrary to actual learning processes, must base on
meta-inputs, not on exact inputs (which remain unknown). Assume a simple scene, in which
a classifier TC is built from a data transformer T and a classifier C (compare Figure 9). It

3. Machines which provide necessary outputs.
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would be impossible to compute complexity of the classifier C basing on its inputs, because
one of the inputs is taken from the output of the transformer T, which will not be known
before the learning process of T is finished. Complexity computation may not be limited
to a part of TC machine or wait until some machines are ready. To make complexity com-
putation possible we use proper meta-inputs descriptions. Meta-inputs are counterparts of
inputs in the “meta-world”. Meta-inputs contain descriptions (as informative as possible)
of inputs which “explain” or “comment” every useful aspect of each input which could be
helpful in determination of the complexity.

Because machine inputs are outputs of other machines, the space of meta-inputs and
the space of meta-outputs are the same.

To facilitate recurrent determination of complexity—which is obligatory because of
basing on a recurrent definition of machine configuration and recurrent structure of real
machines—the functions, which compute complexity, must also provide meta-outputs, be-
cause such meta-outputs will play crucial role in computation of complexities of machines
which read the outputs through their inputs.

In conclusion, a function computing the complexity for machine L should be a transfor-
mation

DL : KL ×M+ → R2 ×M+, (8)

where the domain is composed by the configurations space KL and the space of meta-inputs
M+, and the results are the time complexity, the memory complexity and appropriate meta-
outputs. It is important to see the similarity with the definition of learning (Eq. 1), because
computation of complexity is a derivative of the behavior of machine learning process.

The problem is not as easy as the form of the function in Eq. 8. Finding the right
function for given learning machine L may be impossible. This is caused by unpredictable
influence of some configuration elements and of some inputs (meta-inputs) to the machine
complexity. Configuration elements are not always as simple as scalar values. In some
cases configuration elements are represented by functions or by subconfigurations. Similar
problem concerns meta-inputs. In many cases, meta-inputs can not be represented by
simple chain of scalar values. Often, meta-inputs need their own complexity determination
tool to reflect their functional form. For example, a committee of machines, which plays a
role of a classifier, will use other classifiers (inputs) as “slave” machines. It means that the
committee will use classifiers’ outputs, and the complexity of using the outputs depends
on the outputs, not on the committee itself. This shows that sometimes, the behavior of
meta-inputs/outputs is not trivial and proper complexity determination requires another
encapsulation.

6.2 Meta Evaluators

To enable so high level of generality, the concept of meta-evaluators has been introduced.
The general goal of meta-evaluator is

• to evaluate and exhibit appropriate aspects of complexity representation basing on
some meta-descriptions like meta-inputs or configuration4.

4. In case of a machine to exhibit complexity of time and memory.
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• to exhibit a functional description of complexity aspects (comments) useful for further
reuse by other meta evaluators5.

To enable complexity computation, every learning machine gets its own meta evaluator.

Learning machine Meta evaluator

Because of recurrent nature of machine (and machine configuration) and because of
nontriviality of inputs behavior (which sometimes have complex functional form), meta
evaluators are constructed not only for machines, but also for outputs and other elements
with “nontrivial influence” on machine complexity.

Evaluator for

Nontrivial objects

Output

Machine

Each evaluator will need adaptation, which can be seen as an initialization and can be
compared to the learning of machine. In such meaning the process DL (Eq. 8) will be
the typical adaptation of evaluator devoted on the machine L. It means that before using
given evaluator, it has to be adapted. Then, evaluator can be used to calculate aspects of
complexity devoted for given evaluator (compare, presented below, typical evaluators type
and their functionality).

It is sometimes necessary to estimate complexity on the basis of machine configuration
and real inputs (not meta-inputs as in Eq. 8). In such case, we would need an adaptation
of machine evaluator in the form:

D′L : KL × I+ → R2 ×M+, (9)

where I+ is the space of machine L inputs. Such approach would require construction of
two evaluators for each machine: for the forms presented in Eq. 8 and Eq. 9. But it is
possible to resign from the Eq. 9 form. The solution is to design output evaluators and
their adaptation as:

Do : I1 →M1, (10)

where I1 is a space of (single) output and M1 is the space of meta-output. And now we
can seen that meta-input (or meta-output) is nothing else than special case of evaluator,
the output evaluator.

Using output evaluators, the “known” inputs can be transformed to meta-inputs (KL×
I+ → KL ×M+), and after that, the machine evaluator of the form of Eq. 8 can be used.
This finally reduces the needs of adaptation in the form of Eq. 9.

5. In case of a machine the meta-outputs are exhibited to provide complexity information source for their
inputs readers.
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Sometimes, machine complexity depends on nontrivial elements (as it was already men-
tioned), typically some parts of the configuration. Then, the behavior of machine changes
according to changes of nontrivial part of the machine configuration. For example, con-
figurations of machines like kNN or SVM are parameterized by metric. The complexity
of metric (the time needed to calculate single distance between two instances) does not
depend on the kNN or SVM machine, but on the metric function. Separate evaluators for
such nontrivial objects, simplify creation of machine evaluators, which may use subeval-
uators for the nontrivial objects. Every evaluator may order creation of any number of
(nested) evaluators. Adaptation of evaluators for nontrivial objects may be seen as:

Dobj : OBJ →Mobj , (11)

where OBJ is the space of nontrivial objects and Mobj is their evaluators space (which is
subspace of all evaluators, of course).

The adaptation process is the major functionality of each evaluator and depends on the
type of the evaluator and parameters of the adaptation function. Adaptation is realized by
EvaluatorBase method:

EvaluatorBase(object[] data);

In general, the goal of this method is to use the data as the “source of information” for
given evaluator.

The data are different in type, goal and other aspects, depending on the type of evaluator
(compare Eq. 8, 10, and 11):

• if an evaluator is defined for a machine, then the data may be a real machine or a
configuration and meta-inputs,

• evaluators constructed for outputs, in the data get a real output,

• in other cases, data depend on the needs of particular evaluators.

When evaluators may be defined in analytical way (quite rare cases), the evaluators
need only to be adapted via EvaluatorBase. In other cases, the approximation framework
is used to construct evaluators (see Figure 12 and Section 6.3). The precess of creation of
evaluators is presented in Section 6.3.2.

Further functionality of meta evaluators depends on their types. Some examples are
presented in the following subsections.

6.2.1 Machine Evaluator

In the case of any machine evaluator, the additional functionality consists of:

Declarations of output descriptions:
If given machine provides outputs, then also the output evaluators, devoted to this
machine type, must provide meta-descriptions of the outputs. The descriptions of
outputs are meta evaluators of appropriate kind (for example meta-classifier, meta-
transformer, meta-data etc.). Output description may be the machine evaluator itself
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Plain Evaluator

Ready to use evaluator

adaptation

Learnable Evaluator

data collection

evaluator learning

Ready to use evaluator

adaptation

Figure 12: Creation of ready to use evaluator for plain evaluator and evaluator constructed
with approximation framework.

or a subevaluator produced by the machine evaluator or the evaluator provided by
one of submachine evaluators constructed by the machine evaluator (machine may
create submachines, evaluator may create evaluators of submachines basing on their
configuration and meta-inputs).

Time & Memory:
The complexities defined by Eq. 3, 5–7 make use of program length and time. Here,
the two quantities must be provided by each machine evaluator to enable proper
computation of time and memory complexity.

Child Evaluators:
for advanced analysis of complex machines complexities, it is useful to have access
to meta evaluators of submachines. Child evaluators are designed to provide this
functionality.

6.2.2 Classifier Evaluator

Evaluator of a classifier output, has to provide the time complexity of classification of an
instance:

real ClassifyCmplx(DataEvaluator dtm);

Apart from the learning time of given classifier, the time consumed by the instance
classification routine is also very important in calculation of complexities. To estimate
time requirements of a classifier test machine, one needs to estimate time requirements
of the calls to the machine classification function. The final time estimation depends on
the classifier and on the data being classified. The responsibility to compute the time
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complexity of the classification function, belongs to the meta classifier side (the evaluator
of the classifier). Consider a classification committee: to classify data, it needs to call a
sequence of classifiers to get the classification decisions of the committee members. The
complexity of such classification, in most natural way, is a sum of the costs of classification
using the sequence of classifiers, plus a (small) overhead which reflects the scrutiny of the
committee members’ results to make the final decision. Again, the time complexity of data
classification is crucial to estimate the complexity and must be computable.

6.2.3 Approximator Evaluator

Evaluator of an approximation machine has exactly the same functionality as the one of a
classifier, except that approximation time is considered in place of classification time:

real ApproximationCmplx(DataEvaluator dtm);

6.2.4 Data Transformer Evaluator

Evaluator of a data transformer has to provide two estimation aspects. The first one
is similar to the functionality of the evaluators described above. Here it represents the
time complexity of transformation of data instances. The second requirement is to pro-
vide a meta-description of data after transformation: the data evaluator. It is of highest
importance—the quality of this meta-transformation of data-evaluator is transfered to the
quality of further complexity calculations.

6.2.5 Metric Evaluator

The machines that use metrics, usually allow to set the metric at the configuration stage (e.g.
kNN or SVM). As parameters of machine configurations, metrics have nontrivial influence
on the complexity of the machine while not being separate learning machines. The most
reasonable way to enable complexity computation, in such cases, is to reflect the metric-
dependence inside the evaluators (one evaluator per one metric). The meta-evaluators for
metrics provide the functionality of time complexity of distance computation and are used
by the evaluators of proper machines or outputs:

float DistanceTimeCmplx();

6.2.6 Data Evaluators

Another evaluators of crucial meaning are data evaluators. Their goal is to provide in-
formation about data structure and statistics. Data evaluator has to be as informative
as possible, to facilitate accurate complexity determination by other evaluators. In the
context of data tables, the data evaluators should provide information like the number of
instances, the number of features, descriptions of features (ordered/unordered, number of
values, etc.), descriptions of targets, statistical information per feature, statistical informa-
tion per data and others that may provide useful information to compute complexities of
different machines learning from the data.
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6.2.7 Other Evaluators

The number of different types of meta evaluators is not determined. Above, only a few
examples are presented of many instances available in the system. During future expansion
of the system, as the number of machine types grows, the number of evaluators will also
increase.

6.3 Learning Evaluators

Defining manually the functions to compute time and memory complexities inside evaluators
for each machine (as well as other complexity quantities for evaluators of other types) is
very hard or even impossible. Often, analytical equation is not known, and even if it is
known or determinable, there is still a problem with conversion of the analytical formula or
the knowledge about the dependencies into estimation of real time measured in universal
seconds.

In any case, it is possible to build approximators for elements of evaluators which es-
timate complexity or help in further computation of such complexity. We have defined
an approximation framework for this purpose. The framework is defined in very general
way and enables building evaluators using approximators for different elements like learn-
ing time, size of the model, etc. Additionally, every evaluator that uses the approximation
framework, may define special functions for estimation of complexity (MethodForApprox).
This is useful for example to estimate time of instance classification etc. It was constructed
to fulfill needs of different kinds of evaluators.

The complexity control of task starting in meta-learning does not require very accurate
information about tasks complexities. It is enough to know, whether a task needs a few
times more of time or memory than another task. The differences of several percent are
completely out of interest here. Assuming such level of accuracy of complexity computation,
we do not loose much, because meta-learning is devoted to start many test tasks and small
deviations from the optimal test task order are irrelevant. Moreover, although for some
algorithms the approximation of complexity is not so accurate, the quarantine (see Section
5.5) prevents from capturing too much resources by a single long-lasting task.

Using the approximation framework, meta evaluator can learn as many aspects of ma-
chine behavior as necessary. Evaluator using approximation framework can estimate an
unlimited set of quantities that may be useful for determination of complexities of some
elements or some quantities for further computation of complexities. Typically, a single
evaluator using the approximation framework creates several approximators. For example,
evaluator of each machine has to provide time and memory complexities. The evaluator will
realize it with two approximators. Additionally, in the case, when machine corresponding
to given evaluator is also a classifier, the classification time may be learned as well, within
the same framework (another dedicated approximator may be constructed). The approxi-
mators are constructed, learned and used (called to approximate) automatically, according
to appropriate declarations in the evaluators, as it will be seen later (in the examples of
evaluators). There is no manual intervention needed in the approximator building process.

Of course, before an evaluator is used by a meta-learning process, all its approximators
must be trained. The learning of all evaluators may be done once, before the first start of
meta-learning tasks. Typically, learned evaluators reside in an evaluators project which is
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loaded before the MLA starts its job. If the system is extended by a new learning machine
and a corresponding evaluator, the evaluator (if it uses the approximation framework) has
to learn and also will reside in the evaluators project for further use. This means that every
evaluator using the approximation engine, has to be trained just once.

Before learning of evaluator approximation models, appropriate data tables must be
collected (as learning data). This process will be described later. First we will present the
evaluator functionality extension, facilitating usage of the approximation framework.

6.3.1 Approximation Framework of Meta Evaluators

The construction of a learnable evaluator (an evaluator making use of approximation frame-
work) differs from construction of a plain evaluator (compare Figure 12).

The approximation framework enables to construct series of approximators for single
evaluators. The approximators are functions approximating a real value on the basis of a
vector of real values. They are learned from examples, so before the learning process, the
learning data have to be collected for each approximator.

START
Init: {startEnv,

envScenario}

Try to generate
next configuration
‘oc’ using startEnv

& envScenario.
Succeeded?

Train each
approximator

Run machines ac-
cording to ‘oc’

Return series
of approximators

for evaluator

Extract in-out pairs
from the project

for each approximator
STOP

no

yes
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a
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lo
op

Figure 13: Process of building approximators for single evaluator.
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Figure 13 presents the general idea of creating the approximators for an evaluator. To
collect the learning data, proper information is extracted form observations of “machine
behavior”. To do this an “environment” for machine monitoring must be defined. The en-
vironment configuration is sequentially adjusted, realized and observed (compare the data
collection loop in the figure). Observations bring the subsequent instances of the training
data (corresponding to current state of the environment and expected approximation val-
ues). Changes of the environment facilitate observing the machine in different circumstances
and gathering diverse data describing machine behavior in different contexts.

The environment changes are determined by initial representation of the environment
(the input variable startEnv) and specialized scenario (compare Section 4), which defines
how to modify the environment to get a sequence of machine observation configurations i.e.
configurations of the machine being examined nest in a more complex machine structure.
Generated machine observation configurations should be as realistic as possible—the infor-
mation flow similar to expected applications of the machine, allows to better approximate
desired complexity functions. Each time, a next configuration ‘oc’ is constructed, machines
are created and run according to ‘oc’, and when the whole project is ready, the learning
data are collected. Full control of data acquisition is possible thanks to proper methods
implemented by the evaluators. The method EvaluatorBase is used to prepare the evalu-
ator for analysis of the environment being observed, while GetMethodsForApprox declares
additional approximation tasks and ApproximatorDataIn, ApproximatorDataOut prepare sub-
sequent input–output vectors from the observed environment.

When generation of new machine observation configurations in the data collection loop
fails, the data collection stage is finished. Now each approximator can be learned from the
collected data and after that the evaluator may use them for complexity prediction. Before
the predicition, the evaluator is provided with appropriate configuration and/or meta-inputs
(depending on the evaluator type)—this adaptation is performed by the EvaluatorBase
method (see Eq. 8, 10, 11).

Note that the learning processes of evaluators are conducted without any advise from
the user (compare Section 6.3.2).

From the description given above, we may conclude that the approximation framework
gives two types of functionality:

• to define information necessary to collect training data for learning approximators,

• to use learned approximators.

The latter enables using approximators (after they are built within the approximation frame-
work) by calling the function:

real[] Approximate(int level);

The input vector for given approximator is obtained by ApproximatorDataIn, described in
detail below. Note that ApproximatorDataIn is used to provide input vectors to approximate
and to collect learning input vectors. It is possible thanks to the extended EvaluatorBase.

The following code presents an example of using the Approximate. It is used to calculate
time complexity of classification of data basing on their meta-input (dtm is an evaluator of
the data).
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78 function ClassifyCmplx(Meta.Data.DataTable Meta dtm)
79 return Approximate(classifyCmplxLevel)[0] ∗ dtm.DataMetaParams.InstanceCount;
80 end

Line 79 calls the approximator with index 0, from level classifyCmplxLevel (0-th element
in the output vector is responsible for time complexity; the idea of levels and layers is
addressed below).

Extended EvaluatorBase. There are two roles of the EvaluatorBase functionality:

• To prepare the adaptation process (as it was presented in Section 6.2 and in Eq. 8,
10 and 11), which has to provide necessary variables/quantities to become ready
to use complexity items inside the evaluator. Also to prepare elements needed by
ApproximatorDataIn to build the input vectors for particular approximators,

• To provide elements necessary for data collection for approximator learning basing
on observed environments. EvaluatorBase has to provide elements, necessary and
sufficient to build learning in-out pairs with ApproximatorDataIn, ApproximatorDataOut
and GetMethodsForApprox.

The approximators can be constructed to estimate:

• time and memory complexity of machine,

• time and memory complexity of particular machine methods (declared for the approx-
imation by GetMethodsForApprox),

• other quantities.

To embed the above three types of approximation, the approximator learners are placed in
separate levels in three layers:

Level Layer

level 1
. . .
level k

1 — Approximators of other quantities

level k + 1
. . .
level n− 1

2 — Approximators for specially defined methods

level n 3 — Approximators of time & memory complexity of machine

The order of levels reflects the order of data collection (in each iteration of data collection
loop) and of further learning of approximators after data collection.

Using of approximators from the first layer may be helpful for composing input vectors
for the next two layers. This functionality is used only for advanced evaluators (not too
common, but sometimes very helpful) and will not be described here in more detail.

For each of the three layers, another set of evaluator methods is used to prepare the
in-out learning pairs. In case of the first layer, two functions are used:
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real[] ApproximatorDataIn(int level) — provides the input vector for level level,

real[] ApproximatorDataOut(int level) — provides the output vector for level level.

For the purpose of the second layer, we need:

real[] ApproximatorDataIn(int level) — provides the input vector for complexity of the cor-
responding method,

MethodForApprox[] GetMethodsForApprox() — provides table of methods being subjects to
complexity checking.

To define approximation of the machine layer (the third one), there is only a need for

real[] ApproximatorDataIn(int level).

Functions of each layer, have the same general goal: to collect a single input-output pair
of data for learning appropriation basing on the information extracted by EvaluatorBase
from the observed environment.

Collection of the learning data for the first layer is easy to interpret: the function
ApproximatorDataIn composes the input vector and ApproximatorDataOut composes the out-
put vector.

The number of levels in the second layer is auto-defined by the number of methods re-
turned by the GetMethodsForApprox method. When empty sequence is returned, the layer
is not used by the evaluator. Otherwise, for each of the returned methods, the approxi-
mation framework, automatically approximates the time of execution and sizes of all the
returned (by the method) objects. Therefore, only the input part of the learning data
(ApproximatorDataIn) must be provided by the evaluator—the output is determined au-
tomatically by the system. Each approximation method MethodForApprox is defined as
function:

object[] MethodForApprox(int repetitionNr);

The parameter repetitionNr is used by the approximation framework to ask for a number of
repetitions of the test performed by the method (to eliminate the problem of time measure-
ment for very quick tests). For example, let’s see the code shown below, where a classifier
is called to classify repetitionNr instances. The aim of the function is to measure time
complexity of the classification routine.

81 function ClassifyTimeChecking(int repetitionNr)
82 IDataSet ds = mi.OpenInput(”Dataset”) as IDataSet;
83 IDataSet ds2 = RandomChainOfInstances(ds, repetitionNr);
84 IClassifier c = mi.OpenOutput(”Classifier”) as IClassifier;
85 IOneFeatureData d = c.Classify(ds2);
86 return null;
87 end

It is important to realize that the call of ClassifyTimeChecking is preceded by a call to
EvaluatorBase, which sets up the mi to facilitate opening appropriate inputs (dataset and
classifier).
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The last layer is designed for learning time complexity and memory complexity of the
machine. This layer is used only for machine evaluators. In this case, the approximation
framework automatically tests the learning time and memory usage. These quantities com-
pose the output vectors, so that definition of ApproximatorDataOut is not used here (as in
the case of the second layer). The input vector is obtained, as for both previous layers, by
calling the ApproximatorDataIn function, which is the only requirement for this layer.

Very important is the role of EvaluatorBase, responsible for two types of adaptation—
during data collection and during complexity estimation by evaluators. The method has to
provide all the information necessary to collect proper data with ApproximatorDataIn and
ApproximatorDataOut methods, and to realize the tests of each associated MethodForApprox.

The input vector for each level may be different and should be as useful as possible, to
simplify the process of approximator learning. Any useful element of machine description
which can help to learn the characteristics of complexity should be placed inside the input
vector. The same ApproximatorDataIn method is called also before the evaluator estimates
the complexity of a machine. After the valuator adapts to given machine configuration and
meta-inputs, ApproximatorDataIn prepares data for all the approximators to predict their
targets and final complexities are estimated.

Environments for approximators learning. As shown in Figure 13 and described
above, to build input data tables, necessary for training the approximators, the machine
is observed in changing environment. Each change in the environment results in a single
input–output pair of data for each of approximators. Therefore, to construct successful
complexity evaluators, apart from specification of the necessary approximators, one needs
to define the environment and the way of its manipulation.

To share the ways of handling environments, some groups of common properties are
defined and each evaluator has to assign itself to one of the groups or to define a new group
and assign to it. For example, to learn estimation of machine complexities, the machine
should be trained using different configurations with different input data to explore the
space of significantly different situations of the machine training and exploitation of its
model.

The machine observation configurations, generated in the data collection loop are de-
termined by the following items:

IConfiguration ApproximationConfig — defines the initial configuration of the machine clos-
est environment for observations, to be nested in the ApproximationGroupTemplate
defined for the group (see below). ApproximationConfig is needed because not al-
ways, it is enough to learn and observe a single machine. Sometimes it is necessary
to precede the learning of the machine by a special procedure (some necessary data
transformation, etc.). However sometimes the machine may be used directly (then
the property is just a configuration instance of the machine).

int[] Path — determines the placement of the machine, being observed, in the environment
defined above. For machines, it points the machine. For outputs, it points the machine
which provides the output.

IScenario Scenario — defines the scenario (see Section 4), which goal is to provide different
configurations derived from the ApproximationConfig to explore the space of machine
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observation configurations. For example, in the case of the kNN machine, the scenario
may browse through different values of the number of neighbors k and different metric
definitions.

MachineGroup Group; — encapsulates a few functionalities, which extend the space of ob-
served configurations. The groups of functionalities are shared between evaluators
of similar type, which simplifies the process of defining evaluators. Each group is
characterized by:

string[] DataFileNames; — defines file names of learning data which will be used to
observe behavior of the learning process.

IConfiguration ApproximationGroupTemplate; — defines the procedure of using given
type of machines. For example, it may consist of two elements in a scheme: a data
multiplier which constructs learning data as a random sequence of instances and
features from a dataset provided as an input, and a placeholder for a classifier
(an empty scheme to be replaced by a functional classification machine).

int[] Path; — points the placeholder within the ApproximationGroupTemplate, to be
filled with the observed machine, generated by Scenario used on ApproximationConfig
(compare with the Path described above).

IScenario GroupScenario; — the scenario of configuration changes (see Section 4) to
the ApproximationGroupTemplate. The environment is subject to changes of a
data file DataFileNames and configuration changes defined by the GroupScenario.
For example, this scenario may cooperate with a machine randomizing the learn-
ing data within the ApproximationGroupTemplate as it was already mentioned.

All the functionalities described above, used together, provide very flexible approxima-
tion framework. Evaluators can be created and functionally-tuned, according to the needs,
supplying important help in to successful complexity computation.

The functions discussed above, are used in the meta-code of the next section, to present
some aspects of the proposed meta-learning algorithm.

6.3.2 Creation and Learning of Evaluators.

After presenting the idea of the approximation framework for evaluators, here, we present
the algorithms constructing evaluators, in more detail.

Before any meta-learning algorithm is run, the function CreateEvaluatorsDictionary builds
a dictionary of evaluators which are constructed by the function CreateEvaluator. In fact,
CreateEvaluatorsDictionary creates the evaluators project, which is used inside any meta-
learning task.

88 function CreateEvaluatorsDictionary(Type[] allMachineTypes);
89 foreach (machineType in allMachineTypes)
90 evalDict[machineType] = CreateEvaluator(machineType);
91 return evalDict;
92 end

Creation of an evaluator starts with the creation of an instance (object) of given class
corresponding to the type of given learning machine (machineType, see code line 94).
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93 function CreateEvaluator(Type machineType);
94 eval = getEvalutorInstanceFor(machineType);
95 if(eval is ApproximableEvaluator)
96 {
97 sequenceOfDatasets = CreateDataTablesForApprox(machineType);
98 listOfApprox = {};
99 for (level=1 to eval.LevelsCount)

100 {
101 <TRS, TES> = GetTrainTestDataTablesFor(level);
102 approxTab = TrainApproximatorTab(<TRS, TES>);
103 listOfApprox.Append(approxTab);
104 }
105 eval.Approximators = listOfApprox;
106 }
107 return eval;
108 end

If the evaluator does not use the approximation framework, then it is ready (without learn-
ing) and may be called to estimate complexities. Otherwise, learning of appropriate approx-
imators is performed. Line 97 calls a function (described later) which creates a sequence of
learning data tables, according to the meta-description of the evaluator.

Next lines (99–104), for each level, prepare data tables and start learning of a vector of
approximators. The vector of approximators is appended to the list listOfApprox and finally
assigned to the evaluator (in line 105).

The function CreateDataTablesForApprox plays a crucial role in the complexity approx-
imation framework, as it constructs learning data tables for the approximators. To start
with, it needs an instance (object) of the evaluator (line 111) and the meta-description of
its requirements related to the approximation framework.

109 function CreateDataTablesForApprox(Type machineType);
110 sequenceOfDatasets = {};
111 eval = getEvalutorInstanceFor(machineType);
112 machineGroup = eval.Group;
113 foreach (DataFileName in machineGroup.DataFileNames)
114 {
115 dataMachine = CreateDataLoader(DataFileName);
116 groupScenario = machineGroup.GroupScenario;
117 groupScenario.Init(machineGroup.ApproximationGroupTemplate);
118 foreach (gconfig in groupScenario)
119 {
120 scenario = eval.Scenario;
121 scenario.Init(eval.ApproximationConfig);
122 foreach (sconfig in scenario)
123 {
124 c = PlaceConfigInTemplate(gconfig, sconfig, machineGroup.Path);
125 t = StartTask(c, dataset);
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126 m = t.GetSubmachine(machineGroup.Path + eval.Path);
127 eval.EvaluatorBase(m);
128 for (level=1 to eval.InnerApproximatorLevels) // layer 1 (other quantities)
129 {
130 dtIn[level].AddVector(eval.ApproximatorDataIn(level));
131 dtOut[level].AddVector(eval.ApproximatorDataOut(level));
132 }
133 foreach (meth in eval.GetMethodsForApprox()) // layer 2 (methods)
134 {
135 level++;
136 <time, objectsTab> = CheckMethod(meth, t);
137 objectsSizes = CheckSizes(objectsTab);
138 dtIn[level].AddVector(eval.ApproximatorDataIn(level));
139 dtOut[level].AddVector(<time, objectsSizes>);
140 }
141 if (eval is assigned to a machine) // layer 3 (machine)
142 {
143 level++;
144 dtIn[level].AddVector(eval.ApproximatorDataIn(level));
145 dtOut[level].AddVector(<t.time, t.memorySize>);
146 }
147 }
148 }
149 }
150 sequenceOfDatasets = resplit(<dtIn, dtOut>);
151 return sequenceOfDatasets;
152 end

The observations are performed for each dataset (the loop in line 113), for each group
configuration gconfig generated by the group scenario (the loop in line 118), for each machine
configuration sconfig generated by the scenario (the loop in line 122). The scenarios are
initialized before they provide the configurations (see lines 117 and 121, and Section 4).

In line 124, the configuration sconfig is placed within the group configuration gconfig in
the location defined by machineGroup.Path. This composes a configuration c which defines
the observation task t (next line). The following line extracts a link to the observed machine
m from the observation task.

Next, basing on the link m, the function EvaluatorBase is called to provide information
on the observed machine to ApproximationData(In/Out).

Then, new instances are added to the learning data tables for approximators of subse-
quent levels (first those of the first layer, then the methods layer and finally the machine
layer).

As described before, the method ApproximationDataIn is called for each layer, while
ApproximationDataOut just for the levels of the first layer—the system automatically pre-
pares the output data for both methods layer (the outputs are time and proper object sizes)
and machine layer (the outputs are time and memory complexities).
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At the end (line 150), the input and target parts are transformed to appropriate data
tables to be returned by the function.

6.4 Example of Evaluators

To better see the practice of evaluators, we present key aspects of evaluators for some
particular machines.

6.4.1 Evaluator for K Nearest Neighbors Machine

This evaluator is relatively simple. Nevertheless, the requires functionality must be defined
(according to the description of the preceding sections).

EvaluatorBase
In the case of kNN, in this function, the evaluator saves the kNN configuration and
the evaluator of the input data. Another goal is to prepare the output description of
the classifier’s evaluator.

153 function EvaluatorBase(object[] data);
154 Config = GetConfiguration(data);
155 Outputs Meta inputsMeta = GetOutput MetaFrom(data);
156 DataEvaluator = inputsMeta[”Dataset”][0];
157 DeclareOutputDescription(”Classifier”, this);
158 end

Time
kNN machines do not learn, so the time of learning is 0.

159 function Time()
160 return 0;
161 end

Memory
The model uses as much memory as the input data, i.e. DataEvaluator.MemoryCmplx():

162 function Memory()
163 return DataEvaluator.MemoryCmplx();
164 end

ClassifyCmplx
This function approximates the complexity of classification using the approximator:

165 function ClassifyCmplx(DataEvaluator dtm);
166 return Approximate(classifyCmplxLevel)[0] ∗ dtm.InstanceCount;
167 end;

classifyCmplxLevel points appropriate approximators level.
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ApproximatorDataIn
The method provides training data items for approximation of the classification com-
plexity (line 171) and of the machine learning process complexity (line 174):

168 function ApproximatorDataIn(int level)
169 switch (level)
170 {
171 case classifyCmplxLevel:
172 return { Config.K,
173 DataEvaluator.InstanceCount ∗ Metric Meta.DistanceTimeCmplx };
174 case machineLevel:
175 return { Config.K, Metric Meta.DistanceTimeCmplx,
176 DataEvaluator.InstanceCount, DataEvaluator.FeatureCount };
177 }
178 end

ApproximationConfig
For kNN, it is just the configuration of kNN machine.

179 function ApproximationConfig()
180 return new kNNConfig();
181 end

Scenario
The scenario manipulates the ,,k” (the numbers of neighbors) and the metric.

Path
The kNN configuration is not nested in another machine configuration (it constitutes
the ApproximationConfig itself), so the path does not need to point any internal con-
figuration, hence is empty.

182 function Path()
183 return null;
184 end

GetMethodsForApprox
Returns the function ClassifyTimeChecking devoted to computing the time of classifi-
cation with the kNN model:

185 function GetMethodsForApprox()
186 return new MethodForApprox[]{ ClassifyTimeChecking };
187 end

The kNN evaluator is assigned to a machine group prepared for classifiers. The group
definition includes:

ApproximationGroupTemplate
This template is a scheme configuration with two subconfigurations. The first is the
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RandomSubset machine, which provides data sets consisting of different numbers of
randomly selected instances and features taken from some source data set. The second
subconfiguration is the placeholder for a classifier. At runtime, the placeholder is filled
with proper classifier (in this case with the kNN configuration). The classifier gets
data input from the RandomSubset machine output.

GroupScenario
It randomizes the configuration of RandomSubset machine to obtain more observations
for learning the approximation targets.

6.4.2 Example of Evaluator for Boosting Machine

Boosting is an example of machine using many submachines. Intemi implementation of
boosting machine, repeatedly creates triples of submachines consisting of data distributor
machine, classifier machine and a test of the classifier. All of the submachines have their
own influence on the complexity of the boosting machine.

EvaluatorBase
Boosting evaluator requires more complex EvaluatorBase then the one of kNN:

188 function EvaluatorBase(params object[] data)
189 Config = GetConfiguration(data);
190 Outputs Meta inputsMeta = GetOutput MetaFrom(data);
191 DataEvaluator = inputsMeta[”Dataset”][0];
192 Outputs Meta d = { {”Dataset”, DataEvaluator} };
193 boostDistributor = EvaluatorEngine.EvaluateMachine(
194 BoostingDistributor, d);
195 classifier = EvaluatorEngine.EvaluateMachine(
196 Config.Subconfigurations[0], d);
197 Outputs Meta d2 = new Outputs Meta();
198 d2.Add(”Dataset”, DataEvaluator);
199 d2.Add(”Classifier”, classifier.GetOutputDescription(”Classifier”));
200 classTest = EvaluatorEngine.EvaluateMachine(
201 new Intemi.Testing.ClassTestConfig(), d2);
202 DeclareOutputDescription(”Classifier”, this);
203 end

Lines 189 and 191 determine the configuration of boosting machine and the data
evaluator, similarly as for the evaluator of kNN. In line 193 the data distributor
evaluator is created using the EvaluatorEngine, which enables creation of evaluators
by other evaluators.

The classifier evaluator (see line 195) is constructed in a similar way to the data
evaluator. Here, the classifier configuration is extracted from the structure of subcon-
figurations, because it may be any classifier defined as the first subconfigration of the
boosting configuration.
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Line 200 constructs the evaluator of a classification test. The evaluator gets meta-
inputs descriptions of the data evaluator (DataEvaluator) and the classifier evaluator
(classifier).

Because boosting is a classifier, the last line of the code of EvaluatorBase declares
output meta-description of the classifier.

Time
The time of boosting machine training is the sum of time amounts necessary to build
the sequence of distributors, classifiers and test machines plus the time of the boosting-
only part of learning:

204 function Time
205 return JustThisMachineTime + Config.NrOfClassifiers ∗
206 (boostDistributor.Time + classifier.Time + classTest.Time);
207 end

Memory
Calculation of the occupied memory is analoguous to that of time consumption:

208 function Memory
209 return JustThisMachineMemory + Config.NrOfClassifiers ∗
210 (boostDistributor.Memory + classifier.Memory + classTest.Memory);
211 end

ClassifyCmplx
The costs of classifying by boosting models are nearly equal to the sum of classifying
given data (dtm evaluator) by each of the subclassifiers:

212 function ClassifyCmplx(DataEvaluator dtm)
213 subclass = classifier.GetOutputDescription(”Classifier”);
214 return Config.NrOfClassifiers ∗
215 subclass.ClassifyCmplx(dtm) ∗ 1.1;
216 end

ApproximatorDataIn
The input data for the approximators is quite easy to determine. Boosting complexity
(excluding learning of submachines) depend mostly on the number of submachines (the
cost of creation not of the learning) and on the size of data. Thus:

217 function ApproximatorDataIn(int level)
218 return { Config.NrOfClassifiers, DataEvaluator.InstanceCount };
219 end

ApproximationConfig
The tested configuration is just a boosting configuration with proper classifier config-
uration inside (here, the naive Bayes classifier):
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220 function ApproximationConfig
221 BoostingConfig c;
222 c.ClassfierTemplate = NBCConfig();
223 return c;
224 end

The evaluator of boosting will work properly not only with naive Bayes, because in
code line 195, appropriate evaluator for inner classifier is constructed (at the time of
complexity estimation, it is the evaluator of the classifier defined in the configuration).

Scenario
The scenario, simply builds configurations with different numbers of submachines.

225 function Scenario()
226 return new Meta.ParamSearch.StepScenario I(null,
227 new string[] { ”NrOfClassifiers” },
228 Meta.ParamSearch.StepScenario I.StepTypes.Linear, 10, 10, 3);
229 end

Path and GetMethodsForApprox
These properties are exactly the same as in the evaluator of the kNN machine.

Boosting machine is a classifier, so its evaluator is also attached to the group devoted to
classifiers. Therefore, the group items are the same as in the case of kNN.

7. Meta-learning in Action

Presented meta-learning algorithm, or rather meta-learning system, may be used in variety
of ways. Generators flow may be defined as a simple graph, but usually, for advanced
problems, it is quite nontrivial graph, which in effect produces many test configurations.
The goal of meta-learning which reflects the problem type may also be defined in several
ways, according to the needs. Similarly, the stop criterion should reflect the preferences
about the conditions of regarding the meta-search as finished.

To present meta-learning in action, we have used a few well known problems from
the UCI Machine Learning repository (Merz and Murphy, 1998). All the benchmarks,
presented below, are classification problems. All the following results are computed using
the same configuration of meta-learning (obviously except the specification of the benchmark
dataset).

First, we have to present the meta-learning configuration, according to the information
presented in Sections 5.2 and 5.3. The configuration consists of several elements: the meta-
learning test template, query test, stop criterion and the generators flow.

Meta-learning Test Template:
The test template exhibits the goal of the problem. Since, the chosen benchmarks are clas-
sification problems, we may use cross-validation as the strategy for estimation of classifiers
capabilities. The repeater machine may be used as the test configuration with distributor
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set up to the CV-distributor and the inner test scheme containing a placeholder for classi-
fier and a classification test machine configuration, which will test each classifier machine
and provide results for further analysis. Such a repeater machine configuration template is

Repeater

Data

Distributor scheme

Data

Training data

Test data

Test scheme

Training data

Test data

CV distributor

Data

Training data

Test data

Classifier

Data Classifier

Classification test
Data

Classifier

Figure 14: Meta-learning test template: Repeater machine configuration for cross-validation
test with placeholder for classifier.

presented in Figure 14. When used as the ML test template, it will be repeatedly converted
to different feasible configurations by replacing the classifier placeholder inside the template
with classifiers configurations generated by the generators flow.

Query test:
To test a classifier quality, the accuracies calculated by the classification test machines may
be averaged and the mean value may be used as the quality measure.

Stop criterion:
In the tests, the stop criterion was defined to become true when all the configurations
provided by the generators flow are tested.

Generators flow:
The generators flow used for this analysis of meta-learning is rather simple, to give the
opportunity to observe the behavior of the algorithm. It is not the best choice for solving
classification problems, in general, but lets us better see the very interesting details of its
cooperation with the complexity control mechanism. To find more sophisticated configu-
ration machines, more complex generators graph should be used. Anyways, it will be seen
that using even so basic generators flow, the results ranked high by the MLA, can be very
good. The generators flow used in experiments is presented in Figure 15. Very similar
generators flow was explained in detail in Section 5.1.

To know what exactly will be generated by this generators flow, the configurations (the
sets) of classifiers generator and rankings generator must be specified. Here, we use the
following:

Classifier set:
kNN (Euclidean) — k Nearest Neighbors with Euclidean metric,

52



Meta-Learning

Generators flow
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Figure 15: Generators flow used in tests.

kNN [MetricMachine (EuclideanOUO)] — kNN with Euclidean metric for ordered fea-
tures and Hamming metric for unordered ones,
kNN [MetricMachine (Mahalanobis)] — kNN with Mahalanobis metric,
NBC — Naive Bayes Classifier
SVMClassifier — Support Vector Machine with Gaussian kernel
LinearSVMClassifier — SVM with linear kernel
[ExpectedClass, kNN [MetricMachine (EuclideanOUO)]] — first, the ExpectedClass6 ma-
chine transforms the original dataset, then the transformed data become the learning
data for kNN,
[LVQ, kNN (Euclidean)] — first, Learning Vector Quantization algorithm is used to
select prototypes, then kNN uses them as its training data (neighbor candidates),
Boosting (10x) [NBC] — boosting algorithm with 10 NBCs.

Ranking set:
RankingCC — correlation coefficient based feature ranking,
RankingFScore — Fisher-score based feature ranking.

The base classifiers and ranking algorithms, together with the generators flow presented
in Figure 15, produce 54 configurations, that are nested (one by one) within the meta-
learning test-scheme and sent to the meta-learning heap for complexity controlled run.

All the configurations provided by the generators flow are presented in Table 3. The
square brackets, used there, denote submachine relation. A machine name standing before
the brackets is the name of the parent machine, and the machines in the brackets are the
submachines. When more than one name is embraced with the brackets (comma-separated

6. ExpectedClass is a transformation machine, which outputs a dataset consisting of one “super-prototype”
per class. The super-prototype for each class is calculated as vector of the means (for ordered features) or
expected values (for unordered features) for given class. Followed by a kNN machine, it composes a very
simple classifier, even more “naive” than the Naive Bayes Classifier, though sometimes quite successful.
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names), the machines are placed within a scheme machine. Parentheses embrace significant
parts of machine configurations.

To make the notation easier to read, we explain some entries of the table. The notation
does not present the input–output interconnections, so it does not allow to reconstruct the
full scenario in detail, but shows machine structure, which is sufficient, here, and signifi-
cantly reduces the occupied space.

The following notation:

[[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]

means that a feature selection machine selects features from the top of a correlation coef-
ficient based ranking, and next, the dataset composed of the feature selection is an input
for a kNN with Euclidean metric—the combination of feature selection and kNN classifier
is controlled by a TransformAndClassify machine.

Notation:

[[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify]

means nearly the same as the previous example, except the fact that between the feature
selection machine and the kNN is placed an LVQ machine as the instance selection machine.

The following notation represents the ParamSearch machine which optimizes parameters
of a kNN machine:

ParamSearch [kNN (Euclidean)]

In the case of
ParamSearch [LVQ, kNN (Euclidean)]

both LVQ and kNN parameters are optimized by the ParamSearch machine.
However in the case of notation

ParamSearch [[[RankingCC], FeatureSelection], kNN (Euclidean)]

only the number of chosen features is optimized because this configuration is provided by
the MPS/FS of Transform & Classify Generator (see Figure 15), where the ParamSearch
configuration is set up to optimize only the parameters of feature selection machine. Of
course, it is possible to optimize all the parameters of all submachines, but this is not the
goal of the example and, moreover, the optimization of too many parameters may provide
to very complex machines (sometimes uncomputable in a rational time).

Table 3: Machine configurations produced by the generators flow of Figure 15 and the enumer-
ated sets of classifiers and rankings.

1 kNN (Euclidean)
2 kNN [MetricMachine (EuclideanOUO)]
3 kNN [MetricMachine (Mahalanobis)]
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4 NBC
5 SVMClassifier [KernelProvider]
6 LinearSVMClassifier [LinearKernelProvider]
7 [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]]
8 [LVQ, kNN (Euclidean)]
9 Boosting (10x) [NBC]
10 [[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]
11 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]], TransformAnd-

Classify]
12 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]], TransformAndClas-

sify]
13 [[[RankingCC], FeatureSelection], [NBC], TransformAndClassify]
14 [[[RankingCC], FeatureSelection], [SVMClassifier [KernelProvider]], TransformAndClassify]
15 [[[RankingCC], FeatureSelection], [LinearSVMClassifier [LinearKernelProvider]], Transfor-

mAndClassify]
16 [[[RankingCC], FeatureSelection], [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]],

TransformAndClassify]
17 [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify]
18 [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClassify]
19 [[[RankingFScore], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]
20 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]], TransformAnd-

Classify]
21 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]], TransformAnd-

Classify]
22 [[[RankingFScore], FeatureSelection], [NBC], TransformAndClassify]
23 [[[RankingFScore], FeatureSelection], [SVMClassifier [KernelProvider]], TransformAndClassify]
24 [[[RankingFScore], FeatureSelection], [LinearSVMClassifier [LinearKernelProvider]], Transfor-

mAndClassify]
25 [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]],

TransformAndClassify]
26 [[[RankingFScore], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify]
27 [[[RankingFScore], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClassify]
28 ParamSearch [kNN (Euclidean)]
29 ParamSearch [kNN [MetricMachine (EuclideanOUO)]]
30 ParamSearch [kNN [MetricMachine (Mahalanobis)]]
31 ParamSearch [NBC]
32 ParamSearch [SVMClassifier [KernelProvider]]
33 ParamSearch [LinearSVMClassifier [LinearKernelProvider]]
34 ParamSearch [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]]
35 ParamSearch [LVQ, kNN (Euclidean)]
36 ParamSearch [Boosting (10x) [NBC]]
37 ParamSearch [[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]
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38 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]],
TransformAndClassify]

39 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]], Trans-
formAndClassify]

40 ParamSearch [[[RankingCC], FeatureSelection], [NBC], TransformAndClassify]
41 ParamSearch [[[RankingCC], FeatureSelection], [SVMClassifier [KernelProvider]], Transfor-

mAndClassify]
42 ParamSearch [[[RankingCC], FeatureSelection], [LinearSVMClassifier [LinearKernelProvider]],

TransformAndClassify]
43 ParamSearch [[[RankingCC], FeatureSelection], [ExpectedClass, kNN [MetricMachine (Eu-

clideanOUO)]], TransformAndClassify]
44 ParamSearch [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClas-

sify]
45 ParamSearch [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClas-

sify]
46 ParamSearch [[[RankingFScore], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]
47 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]],

TransformAndClassify]
48 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]],

TransformAndClassify]
49 ParamSearch [[[RankingFScore], FeatureSelection], [NBC], TransformAndClassify]
50 ParamSearch [[[RankingFScore], FeatureSelection], [SVMClassifier [KernelProvider]], Transfor-

mAndClassify]
51 ParamSearch [[[RankingFScore], FeatureSelection], [LinearSVMClassifier [LinearKernel-

Provider]], TransformAndClassify]
52 ParamSearch [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN [MetricMachine (Eu-

clideanOUO)]], TransformAndClassify]
53 ParamSearch [[[RankingFScore], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAnd-

Classify]
54 ParamSearch [[[RankingFScore], FeatureSelection], [Boosting (10x) [NBC]], TransformAnd-

Classify]

Data benchmarks
Table 4 summarizes the properties of data benchmarks (from the UCI repository) used

in the tests.

Dataset # classes # instances # features # ordered f.

appendicitis 2 106 7 7

german-numeric 2 1000 24 24

glass 6 214 9 9

ionosphere-ALL 2 351 34 34

mushroom 2 8124 22 0

splice 3 3190 60 0

thyroid-all 3 7200 21 6

vowel 6 871 3 3

Table 4: Benchmark data used for the tests.
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Table 5 presents exact complexities (see Eq. 6 for each test machine configuration ob-
tained for the vowel data. The table has three columns: the first one contains the task id
which corresponds to the order of configurations providing by the generators flow (the same
as the ids in Table 3), the second column is the task configuration description, and the third
column shows the task complexity. The rows are sorted according to the complexity.

Table 5: Complexities of the tasks produced by the generators flow for vowel data.
4 NBC 4.77E+006
31 ParamSearch [NBC] 4.99E+006
13 [[[RankingCC], FeatureSelection], [NBC], TransformAndClassify] 5.25E+006
22 [[[RankingFScore], FeatureSelection], [NBC], TransformAndClassify] 5.26E+006
7 [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]] 5.29E+006
1 kNN (Euclidean) 5.78E+006
16 [[[RankingCC], FeatureSelection], [ExpectedClass, kNN [MetricMachine (Eu-

clideanOUO)]], TransformAndClassify]
5.81E+006

25 [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN [MetricMachine (Eu-
clideanOUO)]], TransformAndClassify]

5.81E+006

10 [[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAndClassify] 5.84E+006
19 [[[RankingFScore], FeatureSelection], [kNN (Euclidean)], TransformAndClassify] 5.84E+006
2 kNN [MetricMachine (EuclideanOUO)] 7.82E+006
11 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]], Trans-

formAndClassify]
8.09E+006

20 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]],
TransformAndClassify]

8.09E+006

17 [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify] 8.18E+006
26 [[[RankingFScore], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClas-

sify]
8.18E+006

12 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]], Transfor-
mAndClassify]

9.60E+006

21 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]],
TransformAndClassify]

9.60E+006

3 kNN [MetricMachine (Mahalanobis)] 9.70E+006
8 [LVQ, kNN (Euclidean)] 1.00E+007
6 LinearSVMClassifier [LinearKernelProvider] 1.19E+007
33 ParamSearch [LinearSVMClassifier [LinearKernelProvider]] 1.21E+007
15 [[[RankingCC], FeatureSelection], [LinearSVMClassifier [LinearKernelProvider]],

TransformAndClassify]
1.46E+007

24 [[[RankingFScore], FeatureSelection], [LinearSVMClassifier [LinearKernel-
Provider]], TransformAndClassify]

1.46E+007

14 [[[RankingCC], FeatureSelection], [SVMClassifier [KernelProvider]], TransformAnd-
Classify]

1.72E+007
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23 [[[RankingFScore], FeatureSelection], [SVMClassifier [KernelProvider]], Transfor-
mAndClassify]

1.72E+007

5 SVMClassifier [KernelProvider] 1.82E+007
18 [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClassify] 4.20E+007
27 [[[RankingFScore], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClas-

sify]
4.20E+007

9 Boosting (10x) [NBC] 4.31E+007
36 ParamSearch [Boosting (10x) [NBC]] 4.33E+007
34 ParamSearch [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]] 5.27E+007
29 ParamSearch [kNN [MetricMachine (EuclideanOUO)]] 6.84E+007
30 ParamSearch [kNN [MetricMachine (Mahalanobis)]] 8.09E+007
40 ParamSearch [[[RankingCC], FeatureSelection], [NBC], TransformAndClassify] 1.63E+008
49 ParamSearch [[[RankingFScore], FeatureSelection], [NBC], TransformAndClassify] 1.63E+008
37 ParamSearch [[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAnd-

Classify]
1.78E+008

46 ParamSearch [[[RankingFScore], FeatureSelection], [kNN (Euclidean)], Transfor-
mAndClassify]

1.78E+008

43 ParamSearch [[[RankingCC], FeatureSelection], [ExpectedClass, kNN [MetricMa-
chine (EuclideanOUO)]], TransformAndClassify]

1.79E+008

52 ParamSearch [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN [Metric-
Machine (EuclideanOUO)]], TransformAndClassify]

1.79E+008

38 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Eu-
clideanOUO)]], TransformAndClassify]

2.24E+008

47 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Eu-
clideanOUO)]], TransformAndClassify]

2.24E+008

44 ParamSearch [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], Transfor-
mAndClassify]

2.39E+008

53 ParamSearch [[[RankingFScore], FeatureSelection], [LVQ, kNN (Euclidean)],
TransformAndClassify]

2.39E+008

39 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Maha-
lanobis)]], TransformAndClassify]

2.54E+008

48 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Maha-
lanobis)]], TransformAndClassify]

2.54E+008

42 ParamSearch [[[RankingCC], FeatureSelection], [LinearSVMClassifier [LinearKer-
nelProvider]], TransformAndClassify]

3.65E+008

51 ParamSearch [[[RankingFScore], FeatureSelection], [LinearSVMClassifier [LinearK-
ernelProvider]], TransformAndClassify]

3.65E+008

41 ParamSearch [[[RankingCC], FeatureSelection], [SVMClassifier [KernelProvider]],
TransformAndClassify]

4.36E+008

50 ParamSearch [[[RankingFScore], FeatureSelection], [SVMClassifier [Kernel-
Provider]], TransformAndClassify]

4.36E+008

28 ParamSearch [kNN (Euclidean)] 4.52E+008
32 ParamSearch [SVMClassifier [KernelProvider]] 8.04E+008
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35 ParamSearch [LVQ, kNN (Euclidean)] 9.46E+008
45 ParamSearch [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]], Transfor-

mAndClassify]
1.30E+009

54 ParamSearch [[[RankingFScore], FeatureSelection], [Boosting (10x) [NBC]], Trans-
formAndClassify]

1.30E+009

The results obtained for the benchmarks are presented in the form of diagrams. The
diagrams are very specific and present many properties of the meta-learning algorithm. The
diagrams present information about the times of starting, stopping and breaking of each
task, about complexities (global, time and memory) of each test task, about the order of
the test tasks (according to their complexities, compare Table 3) and about the accuracy
of each tested machine.

In the middle of the diagram—see the first diagram in Figure 16—there is a column
with task ids (the same ids as in tables 3 and 5). But the row order in diagram reflects the
complexities of test task, not the order of machine creation. It means that at the top, the
most complex tasks are placed and at the bottom the task of the smallest complexities. For
example, in Figure 16, at the bottom, we can see task ids 4 and 31 which correspond to the
Naive Bayes Classifier and the ParamSearch [NBC] classifier. At the top, task ids 54 and 45
are the most complex ParamSearch test tasks of this benchmark.

On the right side of the Task id column, there is a plot presenting starting, stopping and
breaking times of each test task. As it was presented in Section 5.4 the tasks are started
according to the approximation of their complexities, and when a given task does not
reach the time limit (which correspond to the time complexity—see Section 6.1) it finishes
normally, otherwise, the task is broken and restarted according to the modified complexity
(see Section 6.1). For an example of restarted task please look at Figure 16, at the topmost
task-id 54—there are two horizontal bars corresponding to the two periods of the task run.
The break means that the task was started, broken because of exceeded allocated time
and restarted when the tasks of larger complexities got their turn. The breaks occur for
the tasks, for which the complexity prediction was too optimistic. A survey of different
diagrams (in Figure 16–23) easily brings the conclusion that the amount of inaccurately
predicted time complexity is quite small (there are quite few broken bars). Note that, when
a task is broken, its subtasks, that have already been computed are not recalculated during
the test-task restart (due to the machine unification mechanism and machine cache). At the
bottom, the Time line axis can be seen. The scope of the time is the interval [0, 1] to show
the times relative to the start and the end of the whole MLA computations. To make the
diagrams clearer, the tests were performed on a single CPU, so only one task was running
at a time and we can not see any two bars overlapping in time. If we ran the projects on
more than one CPU, a number of bars would be “active” at almost each time, which would
make reading the plots more difficult.

The simplest tasks are started first. They can be seen at the bottom of the plot. Their
bars are very short, because they required relatively short time to be calculated. The higher
in the diagram (i.e. the larger predicted complexity), the longer bars can be seen. It confirms
the adequacy of the complexity estimation framework, because the relations between the
predictions correspond very good to the relations between real time consumed by the tasks.
When browsing other diagrams a similar behavior can be observed—the simple tasks are
started at the beginning and then, the more and more complex ones.
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On the left side of the Task-id column, the accuracies of classification test tasks and
their approximated complexities are presented. At the bottom, there is the the Accuracy
axis with interval from 0 (on the right) to 1 (on the left side). Each test task has its own
gray bar starting at 0 and finished exactly at the point corresponding to the accuracy. So
the accuracies of all the tasks are easily visible and comparable. Longer bars show higher
accuracies. However remember that the experiments were not tuned to obtain the best
accuracies possible, but to illustrate the behavior of the complexity controlled meta-learning
and the generators flows.

The leftmost column of the diagram presents ranks of the test tasks (the ranking of
the accuracies). In the case of the vowel data, the machine of the best performance
is the kNN machine (the task id is 1 and the accuracy rank is 1 too) ex equo with
kNN [MetricMachine (EuclideanOUO)] (task id 2). The second rank was achieved by kNN
with Mahalanobis metric which is a more complex task.

Between the columns of Task-id and the accuracy-ranks, on top of the gray bars corre-
sponding to the accuracies, some thin solid lines can be seen. The lines start at the right
side as the accuracy bars and go to the right according to proper magnitudes. For each task,
the three lines correspond to the total complexity (the upper line), the memory complexity
(the middle line) and the time complexity (the lower line)7. All three complexities are
the approximated complexities (seeEq. 6 and 7). Approximated complexities presented on
the left side of the diagram can be easily compared visually to the time-schedule obtained
in the real time on the right side of the diagram. Longer lines mean higher complexities.
The longest line is spread to maximum width. The others are proportionally shorter. So
the complexity lines at the top of the diagram are long while the lines at the bottom are
almost invisible. It can be seen that sometimes the time complexity of a task is smaller
while the total complexity is larger and vice versa. For example see tasks 42 and 48 again
in Figure 16.

The meta-learning illustration diagrams (Figures 16–23) clearly show that the behavior
of different machines changes between benchmarks. Even the standard deviation of accu-
racies is highly diverse. When looking at accuracies within some test, groups of machine
of similar accuracy may be seen, however for other benchmark, within the same group of
machines the accuracies are very variant. Of course the complexity of a test task for given
configuration may change significantly from benchmark to benchmark. However it can be
seen that in the case of benchmarks of similar properties, the permutations of task ids in
the diagrams are partially similar (e.g. see the bottoms of Figures 21 and 23).

The most important feature of the presented MLA is that it facilitates finding ac-
curate solutions in the order of increasing complexity. Simple solutions are started before
the complex ones, to maximize the probability that an accurate solution is found as soon
as possible. It is confirmed by the diagrams in Figures 16–23. Thanks to this property, in
the case of a strong stop-condition (significant restriction on the running time) we are able
to find really good solution(-s) because of starting test tasks in proper order. Even if some
tasks get broken and restarted, it is not a serious hindrance to the main goal of algorithm.

For a few of the benchmarks, very simple and accurate models were found just at the
beginning of the meta-learning process. Please see Figure 16 task ids 1 and 2, Figure 17 task

7. In the case of time complexity the t/ log t is plotted, not the time t itself.
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ids 1 and 2, Figure 19 task ids 1 and 2, Figure 22 task ids 4 and 31, Figure 23 task id 19. The
machines of the first four diagrams, are all single machines of relatively low complexities.
But not only single machines may be of small complexity. The most accurate machine (of
the 54 machines being analysed) for the thyroid data is the combination of feature selection
based on F-score with kNN machine (task id 19). Even nontrivial combinations of machines
(complex structures) may provide low time and memory complexity while single machine
do not guarantee small computational complexity. In the case of very huge datasets (with
huge number of instances and features) almost no single algorithm works successfully in
rational time. However classifiers (or approximators) preceded by not too complex data
transformation algorithms (like feature selection or instance selection) may be calculated
in quite short time. The transformations may reduce the costs of classifier learning and
testing, resulting in significant decrease of the overall time/memory consumption.

In some of the benchmarks (see Figures 18, 20 and 21) the most accurate machine
configurations were not of as small complexity as in the cases mentioned above. For the
german-numeric benchmark, the best machines are SVM’s with linear and Gaussian ker-
nels (task ids 6, 338 and 5). The winner machines, for this benchmark, are of average
complexity and are placed in the middle of the diagram. For the ionosphere benchmark,
the most accurate machine is the SVM with Gaussian kernel but nested in a ParamSearch
machine tuning the SVM parameters. This is one of the most complex test tasks. The
MLA running on the mushroom data, has found several alternative configurations of very
good performance: the simplest is a boosting of naive bayes classifier (task id 9), the sec-
ond is the kNN [MetricMachine (EuclideanOUO)], followed by SVM (with Gaussian kernel),
ParamSearch [kNN [MetricMachine (EuclideanOUO)]], other two configuration of kNN and
ParamSearch [SVMClassifier [KernelProvider]].

Naturally, in most cases, more optimal machine configuration may be found, when
using more sophisticated configuration generators and larger sets of classifiers and data
transformations (for example adding decision trees, instance selection methods, feature
aggregation, etc.) and performing deeper parameter search.

Note that the approximated complexity time is not in perfect compatibility with real
time presented on the right side of the diagrams. The differences are due to not only the
approximation inaccuracy, but also the machine unifications and some deviations in real
CPU time consumption which sometimes is different even for two runs of the same task
(probably it is caused by the .Net kernel, for example by garbage collection which, from
time to time, must use the CPU to perform its own tasks).

Without repeating the experiments, one can think of the results obtained with the stop
criterion set to a time-limit constraint. For example, assume that the time limit was set
to 1/5 of the time really used by given MLA run. In such a case, some of the solutions
described above would not be reached, but still, for several datasets the optimal solutions
would be obtained and for other benchmarks, some slightly worse solutions would be the
winners. This feature is crucial, because in real life problems the time is always limited and
we are interested in finding as good solutions as possible within the time limits.

8. Note that 33 means ParamSearch [LinearSVMClassifier [LinearKernelProvider]] where a linear SVM is
nested within a ParamSearch, but the auto-scenario for linear SVM is empty, which means that Param-
Search machine does not optimize anything and indeed it is equivalent to the linear SVM itself. The
small difference is a result of additional memory costs for ParamSearch encapsulation.
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Figure 16: vowel
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Figure 17: appendicitis
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Figure 18: german-numeric
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Figure 20: ionosphere-ALL
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Figure 23: thyroid-all
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8. Future and Current Research

The next step toward more sophisticated meta-learning is to design advanced machine
configuration generators, able to use and gather meta-knowledge of different kinds. We have
already started some efforts in this direction. For example, we are working on using meta-
knowledge to advise composition of complex machines and to get rid of ineffective machine
combinations. Meta-knowledge will also help produce and advise new data transformations
and check their influence on the results of the meta-search. Advanced generators can learn
and collect experience from information about the most important events of the meta-
search (starting, stopping and breaking test tasks). Using a number of specialized machine
generators will facilitate composition of a variety of machine configurations, while enabling
smart control over the generators results, by means of the part of complexity definition,
responsible for machine attractiveness.

9. Summary

The meta-learning algorithm presented in the paper opens new gates of computational
intelligence. The algorithm may be used to solve problems of various types, in the area
of computational intelligence. Defining the goal is every flexible and may fulfill different
requirements.

Also the search space, browsed during meta-learning is defined by means of a general
mechanism of generators flow, which enables defining different combinations of base ma-
chines in a flexible way. As a result, the meta-learning searches among simple machines,
compositions of transformers and classifiers or approximators, and also among more complex
structures. It means that we look for more and more optimal combinations of transforma-
tions and final classifiers or approximators. What’s more, this meta-learning is able to
find independent (more optimal) transformations for different classifiers and then, use the
complex models in committees.

The criterion of choosing the best model may be defined up to the needs, thanks to the
query system. The focus may be put on accuracy, balanced accuracy or some result of a
more complex statistical tests.

The most important job is made by the complexity control module which organizes the
order of test task analysis in the loop of meta-learning. In most cases, the complexities
are learned by approximation techniques. This approach may and be used to any type of
machines in the system. Even the machines that will be added in future, may work as well
with the scheme of complexity control. The biggest advantage of complexity based test task
order is its independence of particular problem and used generators flow. Without such a
mechanism, meta-learning is condemned to a serious danger of yielding no results because
of starting a long lasting test task, which can not be finished in available time.

There is no problem to search for solutions among different complex machine structures
exploiting feature selection algorithms, instance selection algorithms, other data transfor-
mation methods, classification machines, approximation machines, machine committees etc.
MLAs do not need to know much about the nature of different machine components, so as
to be able to run the tasks from the simplest to the most time and memory consuming.
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They can not loose simple and accurate solution, even when they are given little time for
the search.

Proposed methodology allows to collect meta-knowledge and use it in further work (of
the same MLA or other MLAs). Complexity estimation may be augmented, in a variety of
ways, by defining corrections based on the knowledge gained during meta-learning.

Presented MLAs are able to autonomously and effectively search through functional
model spaces for close to optimal solutions which sometimes are simple and sometimes
really complex. They present very universal and powerful tools for solving really non-trivial
problems in computational intelligence.
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M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
Text and Monographs in Computer Science. Springer-Verlag, 1993. 2, 2, 2, 6.1

C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html. 7

T. Mitchell. Machine learning. McGraw Hill, 1997. 2

Y.H. Peng, P.A. Falch, C. Soares, and P. Brazdil. Improved dataset characterisation for
meta-learning. In The 5th International Conference on Discovery Science, pages 141–152,
Luebeck, Germany, January 2002. Springer-Verlag. 1

Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier. Meta-learning by
landmarking various learning algorithms. In Proceedings of the Seventeenth International
Conference on Machine Learning, pages 743–750. Morgan Kaufmann, June 2000. 1

A.L. Prodromidis and P.K. Chan. Meta-learning in distributed data mining systems: Issues
and approaches. In Hillol Kargupta and Philip Chan, editors, Book on Advances of
Distributed Data Mining. AAAI press, 2000. URL citeseer.ist.psu.edu/article/

prodromidis00metalearning.html. 1

J. Rissanen. Modeling by shortest data description. Automatica, 14:445–471, 1978. 2

Kate A. Smith-Miles. Towards insightful algorithm selection for optimization using meta-
learning concepts. In IEEE World Congress on Computational Intelligence, pages 4117–
4123. IEEE Press, 2008. 1

72

citeseer.ist.psu.edu/article/prodromidis00metalearning.html
citeseer.ist.psu.edu/article/prodromidis00metalearning.html


Meta-Learning

L. Todorovski and S. Dzeroski. Combining classifiers with meta decision trees. Ma-
chine Learning Journal, 50(3):223–249, 2003. URL citeseer.ist.psu.edu/article/

todorovski03combining.html. 1

V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998. 3.1

P. J. Werbose. Beyond regression: New tools for prediction and analysis in the bahavioral
sciences. PhD thesis, Harvard Univeristy, Cambridge, MA, 1974. 3

73

citeseer.ist.psu.edu/article/todorovski03combining.html
citeseer.ist.psu.edu/article/todorovski03combining.html


N. Jankowski and K. Grąbczewski

Contents

1 Introduction 1

2 General Meta-learning Framework 2

3 General System Architecture 7

3.1 Schemes and Machine Configuration Templates . . . . . . . . . . . . . . . . 9

3.2 Query System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Task Spooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Machine Unification and Machine Cache . . . . . . . . . . . . . . . . . . . . 13

4 Parameter Search Machine 14

4.1 Examples of Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Auto-scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Parameter Search and Machine Unification . . . . . . . . . . . . . . . . . . 19

5 Meta-learning Algorithm Elements 20

5.1 Machine Configuration Generators and Generators Flow . . . . . . . . . . . 20

5.1.1 Set-based Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.2 Template-based Generators . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.3 Advanced Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Configuring Meta-learning Problem . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Stating of Functional Searching Space . . . . . . . . . . . . . . . . . 25

5.2.2 Defining the Goal of Meta-learning . . . . . . . . . . . . . . . . . . . 25

5.2.3 Defining the Stop Condition . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.4 Defining the Attractiveness Module . . . . . . . . . . . . . . . . . . 26

5.2.5 Initial Meta-knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Initialization of Meta-learning Algorithm . . . . . . . . . . . . . . . . . . . . 26

5.4 Test Tasks Starting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Analysis of Finished Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6 Meta-learning Results Interpretation . . . . . . . . . . . . . . . . . . . . . . 30

6 Machine Complexity Evaluation 31

6.1 Complexity in the Context of Machines . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Complexities of What Machines are We Interested in? . . . . . . . . 32

6.2 Meta Evaluators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 Machine Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.2 Classifier Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.3 Approximator Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.4 Data Transformer Evaluator . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.5 Metric Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.6 Data Evaluators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.7 Other Evaluators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Learning Evaluators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3.1 Approximation Framework of Meta Evaluators . . . . . . . . . . . . 39

74



Meta-Learning

6.3.2 Creation and Learning of Evaluators. . . . . . . . . . . . . . . . . . . 44
6.4 Example of Evaluators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4.1 Evaluator for K Nearest Neighbors Machine . . . . . . . . . . . . . . 47
6.4.2 Example of Evaluator for Boosting Machine . . . . . . . . . . . . . . 49

7 Meta-learning in Action 51

8 Future and Current Research 70

9 Summary 70

75


	Introduction
	General Meta-learning Framework
	General System Architecture
	Schemes and Machine Configuration Templates
	Query System
	Task Spooling
	Machine Unification and Machine Cache

	Parameter Search Machine
	Examples of Scenarios
	Auto-scenario
	Parameter Search and Machine Unification

	Meta-learning Algorithm Elements
	Machine Configuration Generators and Generators Flow
	Set-based Generators
	Template-based Generators
	Advanced Generators

	Configuring Meta-learning Problem
	Stating of Functional Searching Space
	Defining the Goal of Meta-learning
	Defining the Stop Condition
	Defining the Attractiveness Module
	Initial Meta-knowledge.

	Initialization of Meta-learning Algorithm
	Test Tasks Starting
	Analysis of Finished Tasks
	Meta-learning Results Interpretation

	Machine Complexity Evaluation
	Complexity in the Context of Machines
	Complexities of What Machines are We Interested in?

	Meta Evaluators
	Machine Evaluator
	Classifier Evaluator
	Approximator Evaluator
	Data Transformer Evaluator
	Metric Evaluator
	Data Evaluators
	Other Evaluators

	Learning Evaluators
	Approximation Framework of Meta Evaluators
	Creation and Learning of Evaluators.

	Example of Evaluators
	Evaluator for K Nearest Neighbors Machine
	Example of Evaluator for Boosting Machine


	Meta-learning in Action
	Future and Current Research
	Summary

