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Filters & Wrappers

Filter approach:
+ define your problem, for example assignment of class labels;

+ define an index of relevance for each feature R(X))
+ rank features according to their relevance R(X;,)= R(X,,) = .. R(X;,)

+ rank all features with relevance above threshold R(X;,) = #,

Wrapper approach:

- select predictor P and performance measure P(Data)

+ define search scheme: forward, backward or mixed selection
« evaluate starting subset of features X, ex. single best or all features

+ add/remove feature X;, accept new set X «—{ X +X} if
P(Datal X +X,)>P(Datal X,)

Filters

Complexity of the forward or backward wrapper approach for d features
in the worst case is O(dm), the number of selected features m < d.

If the evaluation of the error on the training set is costly, or d is very large
(in some problems it can be 104-10%), then filters are necessary.
Complexity of filters is always O(d), and evaluations are less expansive.
Simplest filter for nominal data: majority classifier.

K=2 classes, d binary features X,=0, 1, i=1..d and N samples X®.

Joint probability P(wj,X{) is a 2x2 matrix carrying full information.

P(0.X )= 1[N(w0,0) N(a)o,l)]_[P(wo,O) P(a)o,l)]

N\ N(@.0) N(a.1)] | P(0.0) P(a.1)

N
Since P(@,,0)+P(ay,1)=P(@,), P(0,,0)+P(®,,1)=P(®,)=1-P(ay,),
and P(ay)+P(w,)=1 there are only 2 free parameters here.

Majority filter

MAP Bayesian classifier makes in the two-class with binary X;=0,1
values, optimal decisions:
IF P(ay,, X=0) > P(w,, X=0) THEN class @,

Predicted accuracy: a fraction P(a,, X,=0) correct, P(w,, X=0) errors.
IF P(w,, X=1) > P(w,, X=1) THEN class @,

Predicted accuracy: a fraction P(a,, X;=1) correct, P(@,, X=1) errors.
In general Bayesian “informed majority” classifier MC predicts:

MC(X,=x)=w, j:argm]?xP(wk,Xl. =x)

J

Accuracy of this classifier using feature X; requires summing over all
values X; that the feature may take: Example:

A(MC,XI.)=Zm§1xP(a)k,Xi=x,) P(a),x)z[
=1
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MC properties

Since no more information is available two features with the same
accuracy A(MC,X,) = A(MC,X,) should be ranked as equal.

If for a given value x all samples are from a single class then accuracy
of MC is 100%, and a single feature is sufficient.

Since optimal decisions are taken at each step is the MAP classifier an
optimal solution? For binary features yes, but in other cases:

+ Joint probabilities are difficult to estimate, especially for smaller
datasets — smoothed probabilities lead to more reliable choices.

» For continuous features results will strongly depend on discretization.

» Information theory weights contributions from each value of X taking
into account not only the most probable class, but also distribution of
probabilities over other classes, so it may have some advantages,
especially for continuous features.

IT filter indices

Mutual information index is frequently used:
MI(o;X,)=H(0)+H(X,)-H(o,X,)
K M, P(a).,X.:x )
- X =x )1 i R
;k:lp(a), Xj xk)gzP(a).)P(ijxk)

1

To avoid numerical problems with 0/0 for values x, that are not present in
some dataset (ex. in crossvalidation partition) Laplace corrections are
used. Their most common form is:

N(w,X =x)+1
N(X =x)+N(®) < number of classes

P(a)iIX=x)=

where the number of all different feature values is N(X=x).
Some decision trees evaluate probabilities in this way; instead of 1
and N(@) other values may be used as long as probabilities sum to 1.

Correlation coefficient

Perhaps the simplest index is based on the Pearson’s correlation
coefficient (CC) that calculates expectation values for product of feature
values and class values:

E(wX,)-E(w)E(X,)

\/0'2 (w)o’ (X )

For feature values that are linearly dependent correlation coefficient is +1
or —1; for complete independence of class and Xj distribution CC= 0

CC(w,X,)= e [-1,+1]

How significant are small correlations? It depends on the number of

samples n. The answer (see Numerical Recipes www.nr.com) is given by:

P(o~X,)=erf(|CC(w, X, )|Vn/2)

For n=1000 even small CC=0.02 gives P ~ 0.5,
but for n=10 such CC gives only P ~ 0.05.

Other relevance indices

Mutual information is based on Kullback-Leibler distance, any distance
measure between distributions may also be used, ex. Jeffreys-Matusita

M.

M(c),Xj)=ii[\/P(a)i,Xj=xk)—\/P(co,.)P(Xj=xk)T

i=l k=1

Bayesian concentration measure is simply:

BC((:)X) ZZP(&)IX —xk)

i=1 k=1
Many other such dissimilarity measures exist. Which is the best?

In practice they all are similar, although accuracy of calculation of
indices is important; relevance indices should be insensitive to noise
and unbiased in their treatment of features with many values; IT is fine.




Discretization

All indices of feature relevance require summation over probability
distributions. What to do if the feature is continuous?

There are two solutions:

1. Fit some functions to histogram distributions using Parzen windows,
ex. fit a sum of several Gaussians, and integrate to get indices, ex:

P(w,X,=x)

P(w)P(X,=x) =

K
MI(0:X;)=Y [P(@, X, =x)lg,
i=1

2. Discretize, put feature values in some bins, and calculate sums.

Histograms with equal width of bins (intervals);
Histograms with equal number of samples per bin;
Maxdiff histograms: bins starting in the middle (x,,,—x,)/2 of largest gaps

V-optimal: sum of variances in bins should be minimal (good but costly).

Discretized information

With partition of X; feature values x into r; bins, joint information is
calculated as:

MjK

H(m’Xj)z_ZZP(a)i’xe rk)lgzp(wi’xe ’7()

k=1 i=1
and mutual information as:
MI(0:X,)=H(0)+H(X,)-H(0,X,)=

—ZP(a)i)lgzP(a),.)—ZP(xe n)lg, P(xe ”/()_H((’)’Xj)

i=1 k=1

Tree (entropy-based) discretization

V-opt histograms are good, but difficult to create (dynamic programming
techniques should be used).

Simple approach: use decision trees with a single feature, or a small
subset of features, to find good splits — this avoids local discretization.

Example:

C4.5 decision tree discretization maximizing information gain,
or SSV tree based separability criterion, vs. constant width bins.

Hypothyroid screening data, 5 continuous features, Ml shown.

Compare the amount of mutual information or the correlation between
class labels and discretized values of features using equal width
discretization and decision tree discretization into 4, 8 .. 32 bins.

Discretization example

Ml index for 5 continuous features of the hypothyroid screening data.

EP = equal width partition into 4, 8 .. 32 bins
SSV = decision tree partition (discretization) into 4, 8 .. 32 bins
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Feature selection

Selection requires evaluation of mutual information or other indices on
subsets of features S={X;;.X,,..X;;}, with discretization of /-dimensional
feature values X into R, bins:

M(S) Kk

H(ofX,.X,})=-Y Y P(0.XeR)lg,P(0.XeR,)
k=1 i=1

The difficulty here is reliable estimation of distributions for large number

M(S) of [-dimensional partitions. Feedforward pair approximation tries to
maximize M/ of new feature, minimizing sum of M/ with features in S

max MI (0. X,), min) MI(X ;X,).i#j
jes
Ex. select feature maximizing: ~ MI (®; X, ) —,BZMI(XJ.;X,.)

with some < 1. jes

Influence on classification

Selecting best 1, 2, ... k-dimensional subsets, check how different
methods perform using the reduced number of features.

e SV# resuks Brhypothyroid MI USing SSC diSCretization.
AR et g SSV bfs/beam — selection of
A features that are at the top of

the SSV decision tree, with
best first search, or beam
search tree creation method.

kNN ranking — backward
wrapper using KNN.

Ba — pairwise approximation
fails in this example.

Ho. Batues

Hypothyroid data, 21 features, 5 continuous.

GM example, wrapper/manual selection

Look at GM 3 wrapper-based feature selection.
Try GM on Australian Credit Data, with 14 features.
1. Standardize the data.

2. Select “transform and classify”, add feature selection wrapper and
choose SVM leaving default features.

3. Run it and look at “Feature Ranking”, showing accuracy achieved
with each single feature; with default 0.8 cut-off level only one
feature is left (F8) and 85.5% accuracy is achieved.

4. Check that lowering level to 0.7 does not improve results.

5. Checked that SVM 10xCV with all features gives ~85% on the test
part, and with one feature F8 only result is ~86% for train & test.

6. This is a binary feature, so a simple rule should give the same
accuracy; run SSV tree on raw data with optimal pruning.

GM example, Leukemia data
Two types of leukemia, ALL and AML,
7129 genes, 38 train/34 test.
Try SSV — decision trees are usually fast, no preprocessing.

1. Run SSV selecting 3 CVs; train accuracy is 100%, test 91% (3 err)
and only 1 feature F4847 is used.

2. Removing it manually and running SSV creates a tree with F2020,
1 err train, 9 err test. This is not very useful ...

3. SSV Stump Field shows ranking of 1-level trees, SSV may also be
used for selection, but trees separate training data with F4847

4. Standardize all the data, run SVM, 100% with all 38 as support
vectors but test is 59% (14 errors).

5. Use SSV for selection of 10 features, run SVM with these features,
train 100%, test 97% (1 error only).

Small samples ... but a profile of 10-30 genes should be sufficient.




