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Density from histograms

In 1-D or 2-D it is rather simple, histograms provide piecewise constant
approximation — since we do not assume any particular functional
dependence such estimation is called “nonparametric”.

Histograms change,
depending on the size
of the bin B; that
measures frequency
P(XeB)).

Smoothing histograms
may be done by fitting
some smooth functions,
such as Gaussians.

How good is this
approximation?

Why histogram estimation works?

Probability that a data point comes from some region R (belongs to
some category, efc) is:
P=| P(X)dxX

We are given ndata points, what is the chance Pr that k of these points
are from region R? If n=k=1, this Pr=P, in general Pr is the number of
combinations in which k points could be selected out of n, multiplied by
probability of selecting k points from R, i.e. PX, and selecting n-k points
not from R, i.e. (1-P)" that is, the distribution is binomial:

n n— . E k — P
Pr(k) = P (1-p) « Expected k value: (k)=n
Expected variance: 07 (k) =nP(1-P)

samples n small variance of k/n is expected, n

Since P(X) Vi = P = K/n, for a large number of o’ (k jz 5(1 — p)
n
therefore this is useful approximation to P(X).

Parzen windows 1D

Density estimate using (for standardized data) a bin of size h (a window on the
data) in each dimension.

For 1D cumulative density function CP(x)=(# observation<x)/N
Density is given as a derivative of this function, estimated as:

CP(x+h)—CP(x—h) For example, hyperrectangular

P(x)= o windows with H(u)=1 for all |u/<0.5,
Number of points inside: or hard sphere wilh T inside and 0
. outside.
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Density estimate: P(X) - nV - nh? ;H h

Kernel should be H(u)>0 and should integrate to 1.




Parzen windows 1D

Estimate density using (for standardized data) a bin of size h (a window
on the data) in each dimension. For 1D cumulative density function is:

P(x<a)=(# observation x<a)/n <1 (this is probability that x<a ).
Cumulative contributions from all points .. -
should sum up to 1, contribution from »

each interval [x—h/2, x+h/2] with a
single observation x;inside is 1/n.

et

For real data this is a stairway function. ‘
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Density is given as a derivative of this function, but for such staircase
data it will be discontinuous, a series of spikes for x=x; values
corresponding to real observations.

Numerical estimation of density at point x is calculated as:
P(x<a+h/2)—P(x<a—h/2)

P(x=a)= ;

Parzen 1D kernels

We need continuous density estimation, not spikes.

Introduce a kernel function indicating if Hu)= 0 lub1
variable is in [-1,+1] interval: 1 lulkl
: . 1 ¢ X, — X
Density may be now written as: P(x)=—) H| =
nh's h
Density in the window is constant=1, J*""H YTX e =h
so integrating over each kernel: e

Integrating over all x gives therefore total probability=1.
Smooth cumulative density for x < a is then:

“ - ,
P(x<a) :J. P(x)dx This is equal to 1/{1 times the numper of
- x; < a plus a fraction from the last interval
[x;=h/2,a] if a < x+h/2

Parzen windows dD

The window moves with X which is in the middle, therefore density is
smoothed. 1D generalizes to dD situations easily:

Volume V=h? and the kernel (window) function:

XD _X Typically hyperrectangular windows with
Hu)=H| ———

H(u)=1 for all |u/<1 are used, or hard
h sphere windows with 1 inside and 0
outside, or some other localized functions.
Number of points inside:

) his called a “smoothing“ parameter
n X(l)_X
k=Y H ———
,-Z=1: [ : ] k 1 XV -X
~ , . P(X)=—=—V' gl 2=~
Density estimate: ( ) nV nhd,zz:‘ ( h ]

Any function with H(u)>0 integrating to 1 may be used as a kernel.

Example with rectangles

With large h strong smoothing is achieved (imagine window covering all data ...)

prab.density
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Details are picked up when his small, general shape when it is large.

Use as H(u) a smooth function, such as Gaussian; if it is normalized
than also the final density is normalized:

jH(u)du :I:IP(x)dx:iiIH(xm _x]dx=1

h




Example with Gaussians

Dispersion his also called here smoothing or regularization parameter.
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A. Webb, Chapter 3.5 has a good explanation of Parzen windows.
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Assume that P(X) is a combination of some smooth functions ®(X);
P(X)=Y W, (X)
i=1
use an iterative algorithm that adapts the density to the incoming data.

Estimate density P(X|C) for each class separately.

Since calculation of parameters may be done on a network of
independent processors, this leads to the basis set networks, such as
the radial basis set networks.

This may be used for function approximation, classification and
discovery of logical rules by covering algorithms.




