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General formulation

Given data vectors D={X®}, j=1..n, and some parametric functions
P(X]6) that model the density of the data P(X) the best parameters
should minimize log-likelihood for all data samples:

0 =arg mginL(Q 1X) = —Zn"lnP(X“);H)
i=1

P(X|6) is frequently a Gaussian mixture; for a single Gaussian
standard solution will give the formula for mean and variance.

Assume now that X is not complete — features or maybe part of the
vector is missing. Let Z=(X,Y) be the complete vector. Joint density:

P(Z16)=P(X.Y16)=P(YIX.0)P(X16)

Initial joint density may be formed analyzing cases without missing
values; the idea is to maximize the complete data likelihood.

What to expect? E-step.

Original likelihood function L(81X) is based on incomplete information,
and since Y is unknown it may be treated as a random variable that
should be estimated.

Complete-data likelihood function L(81Z)=L(61X,Y) may be evaluated
calculating the expectation of incomplete likelihood over Y. This is done
iteratively, starting from initial estimation 87! new estimation 8/ of
parameters and missing values is generated:

Q(616™")=E,[InP(X.Y10)1X,0"]

where X and @%! are fixed, 0 is a free variable, and the conditional
expectation is calculated using the joint distribution of the X, Y variable

with fixed X
E[YIX =x]= IyPYlX (x,y)dy

EM algorithm

First step: calculate expectation over unknown variables;
get the function Q (616"

Second step: maximization, find new values of the parameters:

6 =maxQ(016""

ax (016"

Repeat until convergence, 8 — 87! < ¢
EM algorithm converges to local maxima, since during the iterations
sequences of likelihoods is monotonically increasing and it is bounded.
ET algorithm is sensitive to initial conditions.
Linear combination of k Gaussian distributions may be efficiently treated

with EM algorithm if one of the hidden variables v=1..k thatis
estimated represents Gaussian number from which data comes.




Example with missing data

4 data vectors, D = {X(), .. X®}; X7={(0,2),(1,0),(2,2),(?,4)}, ? = missing

Data model: a Gaussians with diagonal covariance matrix:
6" = (:ul’luz’o-l’o-z); 6" = (0’0’1’1)

Initial value of the parameters are improved calculating expectation
over the missing value y=X,“; let X, = known data

0(616°)=E,[InP(X,,y16)16° X, |=
I[ilnP(X“) I19)+lnP((y,4)T Ie)jp(y 16°, X ¥ =4)dy

These functions are Gaussians, the first part does not depend ony
and the conditional distribution P(y/x) = P(y,x)/P(x)

... missing data

Conditional distribution:

P(y16% X" =4)=P((y.4)"16°)/ P(X{" = 416°)

=(27)" exp[—%(yz +42))/jp((y',4)T |e°)dy'
After some calculation

2
Q(eleo)zilnp(xm|9)—1+‘ﬁ12—(4_”2)
i=1
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Maximum of Q gives #'=(0.75, 2.0, 0.938, 2.0)7
EM converges in few iterations here.

Fig. from Duda, Hart and Stork, Ch. 3.8.

Some applications

» Reconstruction of missing values.
* Reconstruction of images, many medical applications.
» Reconstruction of signals in the presence of noise.

» Unsupervised learning — no information about classes is needed,
more than clustering, natural taxonomy.

» Modeling of data, estimation of hidden parameters in mixtures.

+ Training of probabilistic models, such as HMM (Hidden Markov
models), useful in speech recognition, bioinformatics ...

Associative memory, finding the whole pattern (image) after seeing a
fragment — although | have never seen it yet done with EM ...

Book: Geoffrey J. McLachlan, Thriyambakam Krishnan,
The EM Algorithm and Extensions, Wiley 1996

EM demos

Few demonstration of the EM algorithm for Gaussian mixtures may be
found in the network.

http://www-cse.ucsd.edu/users/ibayrakt/java/em/

http://www.neurosci.aist.go.jp/~akaho/MixtureEM.html

EM is also a basis for “multiple imputation” approach to missing data.
Each missing datum is replaced by m>1 simulated values and m
versions of the complete data analyzed by standard methods; results
are combined to produce inferential statements that incorporate
missing-data uncertainty.

Schafer, JL (1997) Analysis of Incomplete Multivariate Data, Chapman
& Hall. Some demo software is available:

http://www.stat.psu.edu/~jls/misoftwa.html

Demonstration of EM in WEKA for clustering data.




