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Density estimation

Knowledge of joint probability density P(C,X) or just P(X) allows to do
much more than just discrimination!

Local maxima of probability density functions (PDFs) correspond to
combination of features defining objects in feature spaces.

Estimating PDFs we may create adaptive systems learning from data
with or without supervision. They are useful for:

» Auto-association and hetero-association.

« Completion of unknown parts of the input vector (content-
addressable memory), prediction of missing values.

« Extraction of logical rules, classical and probabilistic (or fuzzy).
+ Finding prototypes for objects or categories in feature spaces.

» Using density functions as heuristics for solution of complex
problems, learning from partial info & solving complex problems.

Cognitive inspirations

How do we recognize objects? Nobody really knows ...

Objects have features, combinations of features, or rather distributions
of feature values in Feature Spaces (FS), characterize objects.

A single object is a point in the FS;

similar objects create a category, or a
concept: for ex. happy or sad face,
corresponding to some area of the
feature space.

P(Angry|Face features) will have
maximum around one of the corners.

In cognitive psychology FS are called “psychological spaces”.

The shape of the P(X|C) distribution may be quite complex, estimated
using known samples to create a fuzzy prototype.

Object recognition

Population of neural columns, each acting as a weak classifiers to
recognize some features, working in chorus — similar to “stacking”.
Second-order similarity in low-dimensional (<300) space is sufficient.
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Missing features

Suppose that one of the features X =(X,,X,, ... X,), for example X, is
missing. What is the most likely value for this feature?

Frequently an average value E(X,) is used, but is this a reasonable
idea? The average may fall in an area where there is no datal!

Fig. 2.22,
Duda, Hart &
Stork, 2000

In this case if X, is known the best answer is the value corresponding

to the maximum density at @,.
Recover missing values searching for maximum density!

Maximum likelihood

Suppose that the density P(X;0) is approximated using a combination
of some parameterized functions. Given a set of observations (data
samples) D={X®}, i=1..n, what parameters should one choose?

Parameters 6 may include also missing values, as a part of the model.

A reasonable assumption is that the observed data D should have
high chance of being generated using the model P(D;0). Assuming
that the data vectors X are independent, the likelihood of obtaining

the dataset D is: 16:D) = IiIP(X”);G)
i=1

The most probable parameters of the model (including missing values)
maximize likelihood. To avoid products use logarithm and minimize -L

mlnL(e,D) = —mlnlnl(H,D) = _ZIHP(X(D;H)
’ ¢ i=1

Solution
Maximum is found by setting the derivative of the log-likelihood to 0:
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Depending on the parameterization, sometimes this can be solved
analytically, but for almost all interesting functions (including
Gaussians) iterative numerical minimization methods are used.

Many local minima of the likelihood function are expected, so the
minimization problem may be difficult.

Likelihood estimation may be carried for samples from a given class
P(Xla;0), assuming that the probability of generating n such samples
is equal to P(Xlw;0)" , and the a priori class probabilities are estimated
from their frequencies.

Such parametric models are called “generative” models.

Example

Example from “Maximum likelihood from incomplete data via the EM
algorithm”, Dempster, Laird, Rubin 1977, data by Rao, from population
genetics. There are 197 observation of 4 types of bugs:

n,=125 times species (class) @, n, = 18 from class @,, n; =20 from

class w;, and n, =34 from class @,. An expert provided the following
parametric expressions for the probabilities to find these bugs:

P(X | a)l;é?) = (2+0)/4; P(X Ia)Z;H) = (1—0)/4

P(X | a)3;9) = (1—9)/4; P(X Ia)4;9) =0/4
Find the value of parameter that maximize the likelihood:
10)=P(X1®:0)" P(X1@;0)" P(X|®,;8)" P(X|w,;0)"

Multiplicative constants n!/(n,!n,!n,!n,!) are not important here.




Solution
Log-likelihood:  L(6)=-n,InP(X|@;6)—n,InP(X|®,;0)
—n,InP(X1@,;0)—n,InP(X@,;0)

aL(H)__ n, _112+n3_'_n_4 0
00 2+60 1-6 0

Derivative:

Quadratic equation for 6 allows for analytical solution: 8 = 0.6268;
now the model may provide estimations of expected frequencies:

(n)=N(2+6)/4=1294
For all 4 classes, expected (real) number of observation:
<n;>=129 (125), <n,>=18 (18), <n;>=18 (20), <n,>=31 (34)

In practice analytic solutions are rarely possible.

General formulation

Given data vectors D={X®}, j=1..n, and some parametric functions
P(X]|6) that model the density of the data P(X) the best parameters
should minimize log-likelihood for all data samples:

¢ =argmin L(61D)= —ilnP(X“');e)
i=1

P(X|6) is frequently a Gaussian mixture; for a single Gaussian
standard solution will give the formula for mean and variance.

Assume now that X is not complete — features, or whole parts of the
vector are missing. Let Z=(X,Y) be the complete vector. Joint density:

P(Z16)=P(X.Y16)=P(YIX.0)P(X16)

Initial joint density may be formed analyzing cases without missing
values; the idea is to maximize the complete data likelihood.

What to expect? E-step.

Original likelihood function L(81X) is based on incomplete information,
and since Y is unknown it may be treated as a random variable that
should be estimated.

Complete-data likelihood function L(81Z)=L(61X,Y) may be evaluated
calculating the expectation of incomplete likelihood over Y. This is done
iteratively, starting from initial estimation 87! new estimation 8/ of
parameters and missing values is generated:

0(016™)=E,[InP(X,Y16)1X,0™ ]

where X and @%! are fixed, 0 is a free variable, and the conditional
expectation is calculated using the joint distribution of the X, Y variable

with fixed X
E[YIX =x]= fyan (x, v )dy

See detailed ML discussion in Duda, Hart & Stork, Chapter 3




