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Non-separable picture

Unfortunately for non-separable data vectors not all conditions may be
fulfilled, some data points are not outside of the two hyperplanes: new
“slack” scalar variables are introduced in separability conditions.

Margin between the two
distributions of points is
defined as the distance
between the two
hyperplanes parallel to the
decision border; it is still
valid for most data, but
there are now two points on
the wrong side of the
decision hyperplane, and
one point inside the margin.

Non-separable case

The problem becomes slightly more difficult, since the quadratic
optimization problem is not convex, saddle points appear.

Conditions:
8w (XV)=WIXD +W, 2+1-& for ¥ =+1
gw (XV)=W'X? +W,<-1+& for Y =—land & >0
If £ > 1 then the point is on the wrong side of the g(X)>0 plane,
and is misclassified.
Dilemma: reduce the number of misclassified points, or keep large

classification margin hoping for better generalization on future data,
despite some errors made now. This is expressed by minimizing:

1 2 < adding a user-defined parameter C and leading
EHW” + CZf, to the same solution as before, with bound on ¢,
i=1

0<g,<C smaller C = larger margins (see Webb Chap. 4.2.5)

SVM: non-separable

Non-separable case conditions, using slack variables:
gw (X) =W'X? +W,2+1-& for Y® =41
gw (X)=W'XP+W, <-1+¢& forY?=-1and £ >0

Lagrangian with penalty for errors scaled by C coefficient:
L(W.,a)= %||w||2 +ci§ —iog [Y”) (W' XO+W,)- 1], @ 20
i=1 i=1

Min W, max a. Discriminant function with regularization conditions:
gX)=W"-X+W,=) ay"X"" . X+W, 0<q <C
i=1

Coefficients « are obtained from the quadratic programming problem
and W, =Y —W".X" from support vectors YVg(X?)=1.




Support Vectors (SV)

Some a have to be non zero, otherwise classification conditions
Y®g(XM—1>0 will not be fulfilled and discriminating function will be
reduce to W,,. The term known as the KKT sum (from Karush-Kuhn-
Tacker, who used it in optimization theory) :

L (W,0)= —'Za,. [YOWT-X"~1], 2,20
i=1

is large and positive for misclassified vectors, and therefore vectors
near the border g(X®)=Y® should have non zero & to influence W.
This term is negative for correctly classified vectors, far from the H,
hyperplanes; selecting ;=0 will maximize the Lagrangian L(W,a).

The dual form with « _\ ly Ty DOy @ . x D
is easier to use, it is Lo ;a,. ) ;a"y ;a’y XX
maximized with one .,

additional equality Za_yo') =0 0<a. <C: i=l.n
constraint: ol ’ T

Mechanical analogy

Mechanical analogy: imagine the g(X)=0 hyperplane as a membrane,
and SV X@ exerting force on it, in the YOW direction.
Stability conditions require forces to sum to zero leading to:

Same as auxiliary SVM condition.

Also all torques should sum to 0
ixm xF = 2%YU)X“) XE

LI |
W Sum=0 if the SVM expression

=Wx——=0 for W is used.
[w]

i=1

Sequential Minimal Optimization

SMO: solve smallest possible optimization step (J. Platt, Microsoft).

Idea similar to the Jacobi rotation method with 2x2 rotations, but here
applied to the quadratic optimization.

Valid solution for min L(a) is obtained when all conditions are fulfilled:
— (i) (i)
Complexity: problem size n2, % =0e7Y"¢g (X)>1
solution complexity n%. 0 < < C < Y'¥'g (X7)=1

a =C<:>Ymg(X“))<1

€- accuracy to which conditions should be fulfilled (typically 0.001)

SMO: find all examples X that violate these conditions;
select those that are neither 0 nor C (non-bound cases).

take a pair of o, o; and find analytically the values that
minimize their contribution to the L(a) Lagrangian.

Examples of linear SVM

SVM SMO, Sequential Multiple Optimization, is implemented in WEKA
with linear and polynomial kernels.

The only user adjustable parameter for linear version is C; for non-
linear version the polynomial degree may also be set.

In the GhostMiner 1.5 optimal value of C may automatically be found
by crossvalidation training.

For non-linear version type of kernel function and parameters of
kernels may be adjusted (GM).

Many free software packages/papers are at: www.kernel-machines.org

Example 1: Gaussians data clusters

Example 2: Cleveland Heart data




Examples of linear SVM

Examples of mixture data with overlapping classes; the Bayesian non-
linear decision borders, and linear SVM with margins are shown.

P

Fig. 12.2,
from Hasti
et. al 2001
data from
mixture of
Training Error: 0.270 Training Error: 028 =~ .
TewEnor | 0285 TestEnor 0.0 Gaussians
Bayes Emor:  9.210 Bayes Ewer: 0.21
With C=10000, with C=0.01, larger margin

Errors seem to be reversed here! Large C is better around decision
plane, but not worse overall (the model is too simple), so it should
have lower training error but higher test; for small C margin is large,
training error slightly larger but test lower.

Letter recognition

Categorization of text samples. Set different rejection rate and calculate
Recall=P,, = P, /P, and Precision= P_ /(P +P_ )=TP/(TP+FP)

Maive Bayes

o/
Decision tree
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Find simifer
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