Computational Intelligence:
Methods and Applications

Lecture 23
Logistic discrimination
and support vectors

Logistic discrimination

Basic assumption of the logistic model: logarithm of the ratio of class
distribution is a linear function:
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This is exact when class distributions are normal (Gaussian) with equal
covariance matrices, and for some discrete data distributions.
Since these probabilities sum to 1, using the Bayesian formula
P(aX) = P(X|w) P(w)/P(X), the model is equivalent to:
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Classification rule is therefore: Similar results to LDA
P(w,1X)
= m >1 Then Class , Else w, Whole data:
g . === Confusion Matrix ===
or WX +W, >0 Then Class @, Else @,
This time probabilities (observations) are non-linear functions of a b <=classified as
parameters W; usually iterative procedures based on maximization of 260 7| a=democrat
likelihood of generation of the observed data are used, equivalent to: 5163 | b = republican
L(W.W,)= HP(a)l lX)H P(o,1X) 10xCV results
Xew, Xem,
Using logistic functions for P(aX) and calculating gradients in respect a b <=classified as Decision trees give better results
to W leads to a non-linear optimization problem. 258 9| a=democrat in this case, perhaps one
This is implemented in WEKA/YALE, giving usually better results than 9159 b= republican hyperplane is not sufficient.

LDA at some increase computational costs.




Maximization of margin 1

optimal iyperplane

Among all discriminating hyperplanes there is one that is clearly better.

Maximization of margin 2

g(X)=WTX+W, is the discriminant function, g(X)/IIWll is the distance.
The best discriminating hyperplane should maximize the distance
between the g(X)=0 plane and the data samples that are near to it.

Maximization of margin 3

Maximize the distance g,,(X)/IIWIl between the plane W and data
samples, or maximize the value of discriminant g, (X) for [IWll=1

Find vectors X that are close to W hyperplane in d dimensions:
X" =arg min gy (X)= min (WX +W,)

For these vectors find W giving maximum distance
mv%XD(W,X(i)) = max gy (X('))/”W”

Which vectors to choose as “support” for such calculation? Let the
target values for classification be Y(@,)=+1 and Y(@,)=—1 and the
margin b be the distance between W and these support vectors:

yo 8w (x®) S i=1., Thisshould be true foral
”w” =T T vectors, in a separable case.

Formulation of the problem

Setting bIIWII=1 (particular choice of b) separation conditions are:
Y9 gy (X?) 21, i=1.n

These conditions define two canonical hyperplanes:
H,: gy (X)=W'X+W,=+1 Distance of H, from the H, separating
H,: gy (X) —W'X W, =-1 plane gy (X)=0is D(H,,H)=1/IWI|

Largest margin is obtained from minimization of IWIl with g,(X),
fulfilling the separation conditions.
This leads to a constrained minimization problem.

Minimize IIWIl with constraints ¥ gy, (X”)) >1, i=l.n

Support vectors are vectors that are the closest to the separating
hyperplane, most difficult to separate and most informative.




Scalar product form

In the d-dimensional space if n > d the weight vector may be expresses
as the combination of:

W:iaix(i)

i=1

It should be enough to take only d independent training vectors, so
most a=0. Therefore the discriminant function:

gw(X)=W'X=) XX
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The kernel matrix KU will play an important role soon ...

Lagrange form and SV

Lagrange multiplier method is used to convert constraint minimization
problems into a simpler optimization problem (here X includes X,=1):
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where o are Lagrangian multipliers - free positive parameters, and
summation runs over the number of all training samples n.

Minimization of the Lagrangian function over W increases margin.

Suppose that X is misclassification, then the second term g(X®)—1 in
the Lagrangian is negative, and large ¢; will create a large contribution to
L(W,a); this will be decreased by changing W to remove the error.
Therefore ||W|| should be minimized and a maximized, but only for
vectors for which g(X®)—1=0, called Support Vectors (SV).

This leads to the search for the saddle point, not minima;
to simplify it W parameters are replaced by a.

Scalar product discriminant

Differentiating in respect to W and W, gives:
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Interesting! W is now a linear combination of input vectors!

Makes sense, since a component W, of W=W,+W, that does not
belong to the space spanned by X® vectors has no influence on
the discrimination process, because W,"X=0.

Ir?ser_tin.g Win the_ g(X)=W"-X+W, = Z(Ziy(i)x(i)T X +W,
discriminant function: o

for support vector Y0g(X@)=1, so W, =Y""-W".X"

Lagrangian in dual form

Substituting W into the Lagrangian leads to a maximization of a dual
form (X here may be d+1 dim or d-dim, it does not matter):
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In this form optimization criterion is expressed as inner products of
support vectors, and is now maximized subject to constraints.

Initially number of parameters is equal to the number of patterns n,
usually much bigger than dimensionality d, but the final number of non-
zero o, may be small.

This type of quadratic minimization problem has a unique solution!

Popular approach: SMO, Sequential Minimal Optimization algorithm for
Quadratic Programming, fast and accurate.




