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WEKA LDA Wine example

LDA with WEKA, using Wine data.
Classification via regression is used, regression may also be used.

In each crossvalidation regression coefficients may be quite different,
discriminant functions (one per class) may use different features, ex:

e C1: 0.1391 * alcohol Weka “ridge” parameter -
e C2: -0.1697 * alcohol removes small weights
* C3: 0 *alcohol

Good results: 2-3 errors are expected in 10x CV using a one hyperplane:

a b ¢ <=classified as

5 00| a=1

068 3| b=2

0048| c=3 Not much knowledge is gained,

not a stable solution .

WEKA LDA voting example

Not all LD schemes work with more than two classes in WEKA.

LDA with WEKA (choose “Classification via Regression” + Linear
Regression), using Vote data: predict who belongs to democratic and
who to republican party, for all 435 members of USA Congress,

using results of voting on 16 issues. Largest components:

* 0.72 * physician-fee-freeze=y +

*  0.16 * adoption-of-the-budget-resolution=n +

*  0.11 * synfuels-corporation-cutback=n ... mx-missiles, ...

a b <=classified as
253 14| a=democrat
5163 | b =republican Overall 95.6% accuracy

Unfortunately CV and variance of CV are not so easy to calculate,

C 4.5 makes 12 (6+6) errors, same attributes as most important.

LDA conditions
Simplification of conditions defining linear discrimination.
WX >0 for X" € o,
W'X? <0 for X" € o,

Conditions:

using (d+1) dimensional vectors, extended by X,=1 and W,,.
Using negative vectors for the second class leads to simpler form:

W'X® >0 for X =X" € o,
and X" =-X" e @,
Instead of >0 take some small positive values > b

This will increase the margin of classification.

If bis maximized it will provide best solution.




Solving linear equations

Linear equations WTX=DbT may be solved in the least-square sense
using the pseudoinverse matrix, like in the regression case.

X'W=b

If X is a singular matrix or not a square matrix then the inverse X! does
not exist, therefore a pseudoinverse matrix is used:
T+ T -1 T . .
X = (XX ) X, X'X=1I XXT is square, has d dim.

Ty T+ Multiplying by pseudoinverse
W= (XX ) Xb=X"b of XT will leave W on the left.

Singular Value Decomposition is another, very good method for
solving such equation: see discussion and the algorithm in

See Numerical Recipes, chapter 2.6, on-line version is at:
http://www.nr.com

LDA perceptron algorithm

Many algorithms for creating linear decision surfaces have been
inspired by perceptrons, very simplified models of neurons.

Criterion: J (W)=-) W'X?>0
d icE;

where summation goes over the set Er of misclassified samples, for
which WTX<0. This criterion J,(W) measures the sum of the
misclassified distances from the decision boundary.

Minimization by gradient descent may be used:

W(k+1) = W(k) —nkVJp (W) = W(k) +1, Z X(i)

icEr
where a learning constant 7, is introduced, dependent on the
number of iterations k. This solves any linearly separable problem!

No large matrices, no problems with singularity, on-line learning OK.

Perceptron J,(W)

Note that the perceptron criterion is piecewise linear.

Je(W) Jp(W)

Left side: number of errors;
right side: perceptron criterion; zero J(W) values in the
solution region are possible only for linearly separable data.

(after Duda et all, fig. 5.11)

Back to Fisher DA

Fisher linear discrimination (FDA) was used to find canonical
coordinates for visualization; they may also be used for classification.
_W'S,W

Fisher projection: Y=WTX, criterion max J (W) =
w W'S, W

where the between-class scatter matrix is:
= —= = = \T
S, =(X,-X,)(X,-X,)

and the within-class scatter matrix is:
n(Cy) _ . _\T
S, = Z Z (XU) B Xk)(X(” - Xk)
k=1 j=1
How is this connected to LDA? WTX defines a projection on a line,
this line is perpendicular to the discrimination hyperplane going
through 0 (since here W,=0, W is d-dimensional here).




Relation to FDA

Linear discrimination with augmented d+1 dimensional vectors, and
with -X taken for X from the second class, with dxn data matrix X, is:

[WO, W]T X=b"; with special choice for b;
1,—a row with n; elements =1
b = n_l il for all n; samples from @, class n/n,
n, : n, 2 for all n, samples from @, class n/n,

With this choice we can show that W is the Fisher solution:

— — n, — n, —
W, = -X'W; X= —IX1 +—2X2 the mean of all X
n n

W= OJS:1 ()_(1 - )_(2) o is a scaling constant

w' (X— )_() > (0 then Class = @, decision rule; in practice W,

threshold is estimated from data.

LD solutions

FDA provides one particular way of finding the linear discriminating
plane; detailed proofs are in the Duda, Hart and Stork (2000) book.

Method Criterion Solution
LMS with J,=Wx-b w=X'b
pseudoinverse: _
Perceptron: J,==) W'X® Wiy = Wy 477 Y x@
i€eEr ieEr
T — —
Fisher J, =V S,W w=0a8;(X,-X,)
W' S,W
1 ; 2 ol
Relaxation Jy = EZ(WTX( ) — b) /‘X( )‘
ieY

Y= {i IW'X <pl  Use only vectors closer
than b/IIW| to the border.

Differences

LMS solution — orange line;
two perceptron solutions, with different random starts — blue lines.

Optimal linear solution: should optimize both W to be as far as
possible from the data on both sides; it should have large margin b.

Quadratic discrimination

Bayesian approach to optimal decisions for Gaussian distributions leads
to the quadratic discriminant analysis (QDA)

gi(X)=—%ln|2i|+lnP(a)i)——(X—Xi)TZ

Hyperquadratic decision boundaries: g(X)=g{(X);

For equal a priori probabilities Mahalanobis distance to the class
center is used as discriminant.

Decision regions do not have to be simply connected.

Estimate covariance matrices from data, or fit d(d+2)/2 parameters
to the data directly to obtain QDA — both ways are rather inaccurate.




QDA example

QDA for some datasets works quite well.

Left: LDA solution with 5 features X, X,, X,2, X;2 and X;X,;
Right — QDA solution with X, X,

Differences are rather small, in both cases 6 parameters are estimated,
but in real calculations QDA was usually worse than LDA.

Why? Perhaps it is already too complex.

Regularized discrimination (RDA)

Sometimes linear solution is almost sufficient, while quadratic
discriminant has too many degrees of freedom and may overfit
the data preventing generalization.

RDA interpolates between the class covariance matrices X, and the
average covariance matrices for the whole data X:

Y ()=, +(1-a)X
%= LXK (X0 -X,)

nk i€y
s=ly vy (xo g )(x0-% )
LY (3% X,

Best «is estimated using crossvalidation; classification rules are based
on QDA, for =0, QDA is reduced to LDA — simpler decision borders.
RDA gives good results, but where is the software (exceptin S or R)?




