Computational Intelligence:
Methods and Applications

Lecture 18
Decision trees

Wiodzistaw Duch
SCE, NTU, Singapore
Google: Duch

Multi-level DT

First split on the best test/attribute, then continue recursively.
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Children nodes may be split using different test/attributes, sometimes
repeating those already used in the parent nodes.

General DT properties

DT: first general, later more specific decisions
node < test on attribute, selecting subsets or intervals
branching < splitting data vectors into subsets
leaves of the tree are associated with decisions (classes)

Tests: on a single attribute, or their combination
attribute = {value,,value, ..} or attribute < value,

Criteria: maximize information gain, maximize the purity of new nodes;
maximize separability of subset vectors

Pruning: remove branches that contain only a few cases,
simple trees may generalize better (lower variance, higher bias)
evaluation optimal tree complexity on validation set.

Stop criterion: node purity, accuracy, tree complexity.

Attribute selection

Which attribute should be taken next, A1 or A2? Which test?
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Entropy of “pure” nodes (vectors from one class) is 0;
Max. entropy is for a node with mixed samples P=1/2. for P, =1-
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Entropy content

Information is just negative entropy
E, thus entropy change = info gain:
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Weather example (from WEKA book)
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Creation of a decision tree

Creation of a tree < search in the
’ hypothesis space for the simplest
ﬁf\ set of hierarchical rules (most

FON compact tree).
S

ID3 tree — split criterion based on
/@ & information gain.

Bias: smaller trees are better, if equal
\\\ information gain select split with lower
number of branches.
No backtracking.
. Rather robust in the presence of
/ \ noise, although local (greedy) search
does not guarantee that the final tree
will be optimal.
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Decision borders

Hierarchical partitioning of feature space into hyper-rectangles.
Example: Iris flowers data, with 4 features; displayed in 2-D.
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Uni and multi-variate criterions

Univariate, or
monothetic trees,

mult-variate, or
oblique trees.

Figure from
Duda, Hart & Stork,
Chap. 8




Oblique decision borders
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DTs are not stable

Moving just one
example slightly
may lead to quite
different trees and
space partition!
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Lack of stability

W against small
perturbation of data.
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Ockham’s razor

Why simple trees should be preferred?

1.

The number of simple hypothesis that may accidentally fit the
data is small, so chances that simple hypothesis uncover some
interesting knowledge about the data are larger.

Simpler trees have higher bias and thus lower variance, they
should not overfit the data that easily.

Simpler trees do not partition the feature space into too many
small boxes and may generalize better; complex trees may create
a separate box for each training data sample.

Still, even if the tree is small ...
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sufficiently long search by pure chance may find false solution;

for small datasets with many attributes several equivalent (from
the accuracy point of view) descriptions may exist.

One tree is not sufficient, we need a forest of healthy trees!

Overfitting

A model H overfitts the data if:

A model H’exists such that:
Training-error(H) < Training-error(H)
Test-error(H) > Test-error(H)

Model H draws conclusions (makes hypothesis) that are too
detailed for the amount of evidence available.

Accuracy as a function of
the number of tree nodes:
on the training data it may N \
grow up to 100%, but the 7
final results may be worse
than for the majority

classifier!
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Random data example

Generate and label randomly data samples as class @ or class ab,
with the a priori probability of the majority class P(@;)=p>0.5

Majority classifier makes E,,,=1-p percent of errors.

maj

Overfitted tree that classifies correctly all training data has:
N-p nodes from @ class
N-N-p nodes from @ class.

A random Xis assigned to @, class with prob. p and @, with 1-p.

Confusion matrix: o .
s Tree error/Majority classifier error

oo 2p(1-p)
(I-pp (-p) (1-p)

For p=0.75 overfitted tree makes 37.5% errors,
while the majority classifier will make only 25% errors.

=2p>1forp>0.5

Some examples

Please run a few example of decision tree solutions using YALE or WEKA
on benchmark data using wither WEKA knowledge explorer or YALE.
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