Computational Intelligence:
Methods and Applications

Lecture 16
Model evaluation and ROC

Wiodzistaw Duch

Confusion matrices

For n observations, including n, form class @, and n_from other

classes labeled @ _ prediction of a model M are counted and put in
a confusion matrix (rows=true, columns=predicted by model M),
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Google: Duch P, (P.) is the priori probability of class o, (w) estimated from data.
FP and FN

Confusion matrix, including possibility of rejection (don’t know answer):

| TP=P, FN=P_
P (true | predicted) =

FP=P, TN=P_
This notation is used especially in medical applications:

P, is a hit or true positive (TP); P,.,/P, is a true positive rate;
P__is a hit or true negative (TN); P_/P_is a true negative rate
P_, false alarm, or false positive (FP); ex. healthy predicted as sick.
P, _is amiss, or false negative (FN); ex. sick predicted as healthy.

Accuracy and errors

Models are frequently evaluated on the basis of their accuracy.
Elements of P; depend on the evaluated model, P;;(M)

AM)=P_ (M)+P _(M)
LM)=P (M)+P,_(M)
R(M)=P (M)+P (M)=

=1-L(M)-AM)
Accuracy for class k and balanced accuracy used for unbalanced data:
Ak(M)=P/<k(M)/Pk

B(M)=(4, (M)+ 4. (M)




What is better?

Rank 4 classifiers producing the following confusion matrices:

P(olo )_'0.25 0.25] (0lo,,) - 0.4 0.1]
Y7025 0.25] 101 04]

P(olo )_'0.25 0.5 | Plolo,,)= 0.4 0.0]
¥7100 025 Y702 04

Accuracy 0.5 Accuracy 0.8

But which one is better for given accuracy?
M1 or M3? M2 or M4?

Ordering is meaningless because there are two parameters, not
one! For example, accuracy for class 1 and class 2.

Other evaluation measures

In medical applications: accuracy for class + is called sensitivity:
what percentage of really sick people does this test recognize?

Accuracy for class — is called specificity:
is this test specific to class + or does it always says + ?

In information retrieval sensitivity is called recall: what % of truly relevant
information has been recalled?

Precision measures % of really relevant info among all recalled info.
F-measure is the harmonic mean of recall and precision.
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Example

N=100 observations, for x=0 let 10 be from @,, and 30 from @_classes,
and for x=1 there are 40 and 20 cases from @,, and @_ classes:

10 40 0.1 04
N(ox)= {30 20} P(w’x)z[o._% 0.2}
P(x=0)=0.4P(x=1)=06:P(,) = P(@ ) =0.5:

Pl x) = P(@.x)/ P(x) = {1/4 2/3}

3/4 1/2
MAP rule for this data is:
if x=0 then select @ because P(@ 1x=0) >P(®,Ix=0)
if x=1 then select w, because P(®,x=1) >P(@ Ix=1)

If x=0 then 30 w_ vectors are assigned to @_, or P(w._,®)=0.3 and 10 o,
vectors assigned to @_class, so P(w,,®)=0.1; P(®,,®,)=0.2; P(®_,®,)=0.4

Example

If x=1 then 30 w, vectors are assigned to ,, or P(®,,,)=0.4
and 20 w_vectors assigned to w, class, so P(@_,®,)=0.2

Therefore MAP decisions lead then to the confusion matrix:

with P,=0.5, P_=0.5 and 04 0.1
Accuracy = 0.4+0.3=0.7, P(a),- Yo (M)) = {0 2 0 3}
Error =0.1+0.2=0.3 ) )
Sensitivity =0.4/0.5=0.8 (recall)

Specificity =0.3/0.5=0.6

Balanced accuracy = (0.8+0.6)/2 = 0.7

Precision = 0.4/0.6 = 2/3 = 0.67

F-measure = 2*0.8*2/3 *1/(0.8+2/3) = 16/22 = 8/11=0.73




Error functions

Accuracy of the model Mis usually maximized, it is a sum of TP+TN, or a
combination of sensitivity and specificity with the class priors as weights:

A(M)=P_(M)+P_(M)=PS.(M)+PS_ (M)

++

This is obvious: class + has P, fraction of all cases and sensitivity S, is
the accuracy for this class, same for class —, so the sum gives accuracy.
Equivalently the error ratio may be minimized:

L(M)=1-A(M)=P_(M)+P_ (M)

¥
Sometimes we would like to make decisions if we are quite sure that they
are correct. Confidence in model M may be increased by rejecting some

cases. Error=sum of the off-diagonal confusion matrix P( @, a)Mj) elements
(true vs. predicted), accuracy=sum (trace) of diagonal elements, so

EM;y)=yL(M)-A(M)= ;/ZP(a),.,a)Mj)—TrP(a),.,a)Mj) >—1

i#j

More error functions
This combination for 2 classes (ex. one class against all the rest) is:
EM;y)= 7/(P+_ +P, ) - (P++ + P__) !
Rejection rate, or the fraction of the samples that will not be classified is:
RM)=1-L(M)—-A(M)
Minimization of the error-accuracy is thus equivalent to error + rejection:

min E(M ;) < min{(1+7)L(M) + R(M)}

For =0 this is equal to error + rejection; for large ¥ minimization of this
error function over parameters of the model M reduces the sum of FP and
FN errors, but at a cost of growing rejection rate; for example if the model
M {x >5 then o, else @w,} makes 10 errors, all for xe[5,7] then leaving

samples in this range unclassified gives M’ {x >7 then @, or x <5 then w,},

no errors, but lower accuracy, higher rejection rate and high confidence.

Errors and costs

Optimization with explicit costs:
assume that FP (false alarms) cost atimes more than FN (misses).

n}win EM;a)= nEn{P+_(M) +aP (M)}
=min{P,(1-5,(M))- P, (M)+
a[P.(1-S_(M)-P (M)]}
For a = 0 this is equivalent to maximization of
mMinE(M;a =0)=min{P_,(M)+ P, (M)}

and for large « to the maximization of

nllwin E(M;a>1)=min{P_(M)+P (M)}

Lifts and cumulative gains

Technique popular in marketing, where cumulative gains and “lifts” are
graphically displayed: lift is a measure of how effective model predictions
are = (results obtained with)/(without the predictive model).

Ex: is X/ likely to respond? Should | send him an offer?
Suppose that 20% of people respond to your offer.
Sending this offer randomly to N people gives Y,=0.2*N replies.

A predictive model (called “response model” in marketing),
P(o|X;M) uses information X to predicts who will respond.

Order predictions from the most likely to the least likely:

P(®,|X";M) > P(@,]X%M) ... > P(w,|X*M)
The ideal model should put those 20% that will reply in front, so that the
number of replies Y(XJ) grows to Y,=0.2*N for j=1 .. Y,,.
In the ideal case cumulative gain will be then a linear curve reaching Y,
and then remaining constant; lift will then be the ratio Y (Xi)/0.2*j.




Cumulative gains chart

There is no ideal model, so check your predictions P(@,|X;M) against
reality. If the prediction was true plot next point one unit to the right, one
unit up; if prediction was false plot it just one unit to the right. The vertical
axis contains P, portion of all data samples Y, = the number of all that
responded (in this case Y,=1000) out of all N=5000 people contacted.
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ROC intro

Receiver Operator Characteristic evaluate TP (or P,, rate) as a function
of some threshold; for example using the likelihood ratio:

PXlw)P(w)>P(Xlw,)P(w,)

_PXlw) Plw,) .
A= e XTw) (@) :

the threshold may be treated as a
variable measuring confidence;
for 1D distributions it is clear that for y
a large threshold only positive cases :
will be left, but their proportion S,

(recall, sensitivity) decreases to zero.

What is the optimal choice? Depends on the ratio of false alarms (FP,
false positives, P_,) we are willing to accept, or proportion of 1-S = P_/P_

ROC curves

ROC curves display (S,,1-S_), or error of class @_versus accuracy of
class w, for different thresholds:

Ideal classifier: below some
threshold S, = 1 (all positive
cases recognized) for 1-S =0
(no false alarms).
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Reasonable classifier (red):

no errors until some threshold that allows for recognition of 0.5 positive
cases, no errors if 1-S_ > 0.6; slowly rising errors in between.

Good measure of quality: high AUC, Area Under ROC Curve.
AUC = 0.5 is random guessing, AUC = 1 is perfect prediction.
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ROC curve for realistic case: finite number of thresholds and data
points makes it rugged. Instead of the percentage of true positives
(recall, sensitivity) precision is sometimes used.

Each ROC point captures all information contained in confusion matrix
for some parameters (thresholds) of the model and shows for different
probabilities confidence in predictions of the classifier.

Try Yale tutorial 14 showing ROC plots.




ROC for combination of classifiers
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More convex ROC curves show superiority of models for all
thresholds. Here ROC curves for two models show strong and
weak areas: combination of the results of the two models may give

a ROC curve covering the grey area.

ROC for logical rules

Rules for classifiers that give only yes/no predictions, for example
logical rules, give only one point on the ROC curves, at (S,, 1-S.).
AUC = (S, + S))/2, and it is identical along S,+(1-S_)=const line.
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Try the demo of AccuROC for Windows (sample output above)
http://www.accumetric.com/accurocw.htm




