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Bayesian future

The February 2004 issue of MIT Technology magazine showcases
Bayesian Machine Learning as one of the 10 emerging technologies
that will change your world!

Intel wants computers to be more proactive, learn from their
experiences with users and the world around them.

Intel Open Source Machine Learning library OpenML, and

Audio-Visual Speech Recognition
http://www.intel.com/technology/computing/applications/avcsr.htm

Now are part of: Open Source Computer Vision Library
http://www.intel.com/technology/computing/opencv/index.htm

http://sourceforge.net/projects/opencvlibrary

Google: Duch
http://opencvlibrary.sourceforge.net/
Total risks Bayesian risk
Confusion matrix: B, P, .. Py P, Select the class corresponding to minimum conditional risk:
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P(CX)=,1C(X)=,)=P= X)=Y ,P(Xl0)P(w) ZiP (X1@)P(w)
=
Py Py oo P Py This is equivalent to the following decision procedure C:
. . A K+l Define conditional risk of
Total risk of the decision procedure C: a) IX Z}“ p o IX) performing action @ given X
N K n K K+1 f k _ . R |X
R(€)=Y P(0,)R(C.0,)=Y.Y P(a,)A,P, &(X)= @, for k=argminR(a IX)
k=1 k=1 I=1
w, for otherwise

If all P,;=0 for k#I the risk is zero (assuming A;=0).

Minimizing risk means that we try to find decision procedure C that
minimizes “important” errors. For example, if classes @, k=1,..10,
are degrees of severity of heart problems, than mixing A, < &g

d is the value of the risk of not taking any action.
Discrimination functions g,(X) provide minimal risk decision
boundaries if good approximation to P(XIw) probabilities are found.




Discriminating functions

g(X) may also be replaced by posterior probabilities; in the feature
space area where the lowest risk corresponds to decision @, we
have g/(X) > gj(X), and g/(X) = gj(X) at the border.

Any monotonic function of P(@IX) may be used as discriminating f:
g (X)=InP(®1X)=InP(XI®)+hP(w)-InPX)

Some choices:

g (X)=P(w) * Majority classifier

g (X)=P(Xlw) * maximum likelihood classifier

g (X)=P(a@ 1X) * MAP, Maximum A Posterior classifier
g, (X)=-R(@ 1X) * minimum risk classifier (best)

Summary
Posterior probabilities is what we want:

P(Xlo)P(w)
P(X) Evidence

Likelihood x Prior
P(w,1X)=

Minimization of error may be done in a number of ways, for ex:

K K where C(X) = 1
E=1-Y P: E= ZZ”P(“’I 1X)-C, (X)” if Xis from class w,

i=l X =l and 0 otherwise.
Minimization of risk takes into account cost of different types of errors:
using Bayesian decision procedure minimizes total/conditional risks.
Try to write risk for 2 class 1D problem with P(w,)=2/3,

P(,)=1/3, P(X|o,)=Gauss(0,1), P(X|w,)=Gauss(2,2), 1:[2 (1))

1D Gaussians

Simplest application of Bayesian decisions: Gaussian distributions.
2 distributions, 1D, with the same variance, different means:

P(Xlw)= \/%O_exp(—(X—,ui)oni)

Discriminating function: log posteriors g (X )=1In
P(X o)
P(X1w) — P(w,)

exp(—(X —,Ul)2/202)
exp(—(X—,uz)Z/ZGz) P(w,)

g(X)=In

=In

1D Gaussians solution

After simplifications:
_ 2_ 4,2 Plw
o(x) =Pty ot P(@)
c 20 P(w,)
2(X)>0 for class @, g(X)<O0 for class w,

+
For equal a priori probabilities g(X;)=0 in the middle X, = %
between the means of the two

distributions. Otherwise it is shifted
towards class with smaller prior:

X =lul+lu2_ 0-2 P(a)l)
2 w-w Plw)

I3 2
Pieos= 7 Pie,}=.3




dD Gaussians

Multivariate Gaussians:

1 1 _
P(XIQ):W P(—E(X—Hi)TEiI(X—H,-)]

Non-diagonal covariance matrix rotates the distributions.
Discriminant functions are quadratic:

gi(X)=—%ln|Zi|+lnP(a)i)

1 T -1
——(X=-p;) X (X—p,

Discriminant function is thus Mahalanobis distance from the mean +
terms that take into account the prior probability and the variance.

Linear classifiers
Identical covariance matrices => linear discrimination function:
2. (X)=p/Z7'X —%piTE’lu,. +InP(w,)

=) W, X, + W, =W'X+W,
where: j=

WT — uiTZ_l

W, =—%u,-TE‘1u,- +InP(w,)

This type of linear discrimination functions are used quite frequently,
not only in statistical theories but also in neural networks, where:

X are input signals,

W are synaptic weights, and

W, is the neuron activation threshold.

Special cases

If identical covariance matrices and identical a priori probabilities
are assumed then Mahalanobis distance is obtained:

8i (X)z_(X_”i)T x” (X_ui)z_D(X’ui)

Note: max g(X) <> min D(X,\)

For diagonal covariance matrices distance becomes:
D(X,p,) Zs (X, ,u,j) ; s,=1/0;

Weighted Euclldean distance function from the center of the

Gaussian distribution serves as discriminating function.

Bayesian classifier becomes now a nearest prototype classifier:

Xe o, if k =argminD(X,p,)

IIIustratlon
Influence of priors on decision
borders:
in1D
In 2D
In 3D

Note that decision borders are
not between means.

Fig. 2.11, Duda, Hart, Stork




Naive Bayesian classifier

How to estimate probability densities required by Bayesian approach?
P(X|w)=P(X,X,..Xylw) in d-dimensions and b values/feature,

requires b9 bins to estimated numerically density of the vectors!

In practice there is never enough data for that!

Assume (naively) that all features are conditionally independent.

P(Xla,) HP (X, lw,)

Instead of multidimensional function the problem is reduced to
estimation of d one-dimensional P, functions.

If the class wis a disease than symptoms X;, X,, depends on the
class but not directly on each other, so usually this may work.

It works for Gaussian density distributions for classes; perhaps
feature selection has already removed correlated features.

NB

Estimate (learn from data) the posterior probability:
P(wk )

P(w, 1X) H P(X)

Use the log-likelihood ratio:
P@IX)_ Pl@) ¢ R(X 1)
=In n
P(e1X)  Pla) & EB(X, 1)

If the overall result is positive than class @, is more likely.
Each feature has an additive, positive or negative, contribution.

For discrete or symbolic features P(X]w) is estimated from
histograms, for continuous features a single Gaussian or a
combination of Gaussians is frequently fit to estimate the density.

NB Iris example

nbc(iris_type) = { prob(iris_type) = {
Iris-setosa :50, Iris-versicolor: 50, Iris-virginica : 50 };
prob(sepal_length|iris_type) = {

Iris-setosa  : N(5.006, 0.124249) [50], (Normal distribution)

Iris-versicolor: N(5.936, 0.266433) [50], (mean, std)

Iris-virginica : N(6.588, 0.404343) [50] };
prob(sepal_width|iris_type) = {

Iris-setosa  : N(3.428, 0.14369) [50],

Iris-versicolor: N(2.77, 0.0984694) [50],

Iris-virginica : N(2.974, 0.104004) [50] };
prob(petal_lengthliris_type) = {

Iris-setosa  : N(1.462, 0.0301592) [50],

Iris-versicolor: N(4.26, 0.220816) [50],

Iris-virginica : N(5.552, 0.304588) [50] };
prob(petal_widthl|iris_type) = {

Iris-setosa  : N(0.246, 0.0111061) [50],

Iris-versicolor: N(1.326, 0.0391061) [50],

Iris-virginica : N(2.026, 0.0754327) [50] };
Use WEKA or applet: http://www.cs.technion.ac.il/~rani/LocBoost/

NB on fuzzy XOR example

For demonstrations one may use WEKA, GhostMiner 3
or an applet: http://www.cs.technion.ac.il/~rani/LocBoost/

e ée.. L R

10: :53" ; : ; .";?

0.6 2. e o

. 094 : . : H B B B .-,

NB fails completely on b4 SUSUEIE SOOOE WU S WS SO N OO S O SO
such data — why? o

055 : :
P(X,.X,lo,) probabilities S S 0 A VO OO A SO SO
are needed, but they are i . .
more difficult to estimate. o : : '
Use local probability - 3
around your query point. * : it

Fadiid

£z 41 1 81 62 82 04 05 ¢€ 07 65 0% 1
F#1




NB generalization

If the first-order (independent) feature model is not sufficient for

strongly interacting features one can introduce second and third-order

dependencies (to find interacting features look at covariance matrix).
P(Xlw,)=P(X.X, |0 )P (X;10,)P (X, X5, X;|®,)...

This leads to graphical causal Bayesian network models.
Surprisingly:

+ frequently adding explicit correlations makes things worse,
presumably because difficulty in reliable estimation of two or
three dimensional densities.

* NB s quite accurate on many data sets, and fairly popular, has
many free software packages and numerous applications.

* Local approach: make all estimations only around X!

Literature

Duda, Hart & Stork Chap. 2 has a good introduction to the Bayesian
decision theory, including some more advanced sections:

* on min-max, or overall risk minimization which is independent
of prior probabilities;

+ or Neyman-Pearson criteria that introduce constraints on
acceptable risk for selected classes.

More detailed exposition of Bayesian decision and risk theory may
be found in chapter 2 of:

S. Theodoridis, K. Koutroumbas, Pattern recognition (2" ed)
Decision theory is obviously connected with hypothesis testing.

Here chapter 3 of K. Fukunaga, Introduction to statistical pattern
recognition (2" ed, 1990) is the best source, with numerous
examples.




