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Learning

* Learning from data requires a model of data.

* Traditionally parametric models of different phenomena were
developed in science and engineering; parametric models are
easy to interpret, so if the phenomenon is simple enough and a
theory exist construct a model and use algorithmic approach.

* Empirical non-parametric modeling is data driven, goal oriented.
It dominates in biological systems. Learn from data!

* Given some examples = training data, create a model of data that
answers specific question, estimating those characteristics of the
data that may be useful to make future predictions.

* Learning = estimate parameters of the (non-parametric) model;
paradoxically, non-parametric models have a lot of parameters.

* Many other approaches to learning exist, but no time to explore ...

Probability

To talk about prediction errors probability concepts are needed.
Samples Xe X divided into K categories, called classes @, ... Wy
More general, @ is a state of nature that we would like to predict.
P, = P(w,), a priori (unconditional) probability of observing X & @),
K
ZP]( — 1; B< — N(wk)
P N

If nothing else is known than one should predict that a new sample
X belongs to the majority class:

Xe w,; c=argmaxPFb
¢ k

Majority classifier: assigns all new X to the most frequent class.

Example: weather prediction system — the weather tomorrow will be
the same as yesterday (high accuracy prediction!).

Conditional probability

Predictions should never be worse than for the majority classifier!
Usually class-conditional probability is also known or may easily be
measured, the condition here is that X € @,

P (X) = P(Xlw,)=P(XIC=w,)
Joint probability of observing X from @),
P(X,0,)=P(Xlo)P(®,)

Is the knowledge of conditional probability
sufficient to make predictions?

No! We are interested in the posterior P.

P(a)k | X) = P(X,a)k )/P(X) Fig. 2.1, from Duda, Hart, Stork,

Pattern Classification (Wiley).




Bayes rule

Posterior conditional probabilities are normalized:
K

Y P(o,1X)=1

k=1

Bayes rule for 2 classes is P(wi’X)zp(wi |X)P(X)
derived from this:

P(X) is an unconditional probability of P
selecting sample X; usually it is just 1/n,
where n=number of all samples.

For P,=2/3 and P,=1/3 previous figure is:

P(01X)=P(X10)P(w)/P(X)

Fig. 2.2, from Duda, Hart, Stork,
Pattern Classification (Wiley).

Bayes decisions
Bayes decision: given a sample X select class 1 if:
P(w,1X)> P(w,1X)
Using Bayes rule and multiplying both sides by P(X):
P(Xlw)P(®w)>P(Xlw,)P(w,)

Probability of an error is:

P(e1X)=min(P(w 1X),P (o, X))

Average error is:
P(e)=E[P(e1X)]= | P(e1X)P(X)dX

Bayes decision rule minimizes average error selecting smallest P(e|X)

Likelihood

On a finite data sample given for training the error is:

P(e)=) P(elX)

The assumption here is that the P(X) is reflected in the frequency of
samples for different X.

Bayesian approach to learning: use data to model probabilities.
Bayes decision depends on the likelihood ratio:

P(Xlw)P(w)>P(Xlw,)P(w,)

B PXlw) P(w,)
A= X)) P(a)

For equal a priori probabilities class R, R,
conditional probabilities decide. Fig. 2.3, from Duda, Hart, Stork,
Pattern Classification (Wiley).

2D decision regions

For Gaussian distribution of class conditional probabilities:

Fig. 2.6, from Duda, Hart,
Stork, Pattern Classification
(Wiley).

Decision boundaries in 2D are hyperbolic, decision region R, is
disconnected. The ellipsis show high constant values of P(X).




Example

Let o, be the state of nature called “dengue”,

and , the opposite, no dengue.

Let prior probability for people in Singapore be P(®,)=0.1%

Let test T be accurate in 99%, so that the positive outcome of the test

for people with dengue is P(T=+|w,) = 0.99, and negative for healthy
people is also P(T=—|w,) = 0.99.

What is the chance that you have dengue if your test is positive?

What is the probability P(w,|T=+)?
P(T=+) = P(®;,T=+)+P(®,,T=+) = 0.99*0.001+0.01*0.999=0.011
P(w,|T=+)=P(T=+|w,)P(®,)/P(T=+) = 0.99%0.001/0.011 = 0.09, or 9%

Use this calculator to check:
http://members.aol.com/johnp71/bayes.html

Statistical theory of decisions

Decisions carry risk, costs and losses.
Consider general decision procedure:

{w,.. o}, states of nature
{¢,.. a,}, actions that may be taken

M, @), cost, loss or risk associated with action ¢ in state @)

Example: classification decisions

C: X > {o,.. o, 0, @)},
Action ¢; is assigning to vector X a class label 1 .. K, or
@, — no confidence in classification, reject/leave sample as unclassified
@, — outlier, untypical case, perhaps a new class (used rarely).

Errors and losses

Unconditional probability of wrong (non-optimal) action (decision),
if the true state is @), and prediction was wrong:

P(w)= P{C(X) 2o, AC(X)e{w.0}1C= wk}
No action (no decision), or rejection of sample X if the true class
is @), has probability:

PD(a)k)=P{é(X)=a)D IC=a)k}

Assume simplest 0/1 loss function: no cost if optimal decision is taken,
identical costs for all errors and some costs for no action (rejection):
0 if k=1
A =Mao,0)=3 1ifk#lle{l...K}
g, if =D

... and risks

Risk of the decision making procedure C for class @y, with Wy, 1=0p

R(C‘,a)k):E[l(a)k,é(X))IC:a)k}
K+1
zzﬂ’(wk’w[)Pk[ = Ps(wk)+8d PD(wk)
=1
where P, are elements of the confusion
matrix P: R, B, .. B

1K+1

A P, P, .. P

P{C(X)=wIIC:a)k}:P= 21 22 2K+1
PKl PK2 PKK+1

Note that rows of P correspond to the true @) classes, and columns to

the predicted @) classes, [ =1..K+1 or classifier's decisions.




.. and more risks

Trace of the confusion matrix:

A:TrP:iPﬁ

i=1
is equal to accuracy of the classifier, ignoring costs of mistakes.
Total risk of the decision procedure C:

R(¢)=)

K+1

P(o (Ca)):izxy

I=1

Ngls LM”

For special case of costs of
P(a)k )(P€ (a)k ) +é.bp (a)k )) mistakes =1 and rejection =¢;

>~

=1
K+1

Conditional risk of assigning sample X R(a, 1X) Zﬂ% P(a) IX)
to class @y is:




