Computational Intelligence: Methods and Applications

Lecture 9
Self-Organized Mappings

Włodzisław Duch SCE, NTU, Singapore Google: Duch

Brain maps

Tactile, motor, and olfactory data are most basic.

Such data is analyzed by animal brains using topographical organization of the brain cortex.

- Somatosensory maps for tactile, temperature, pain, itching, and vibration signals.
- Motor maps in frontal neocortex and cerebellum cortex.
- Auditory tonotopic maps in temporal cortex.
- Visual orientation maps in primary visual cortex.
- Multimodal orientation maps (superior colliculus)

Senso-motoric map

Visual signals are analyzed by maps coupled with motor maps and providing senso-motoric responses.

Figure from:

P.S. Churchland, T.J. Sejnowski, The computational brain. MIT Press, 1992

Somatosensoric and motor maps

Representation of fingers

Models of self-organization

SOM or SOFM (Self-Organized Feature Mapping) – self-organizing feature map, one of the simplest models.

How can such maps develop spontaneously?

Local neural connections: neurons interact strongly with those nearby, but weakly with those that are far (in addition inhibiting some intermediate neurons).

History:

von der Malsburg and Willshaw (1976), competitive learning, Hebb mechanisms, "Mexican hat" interactions, models of visual systems. Amari (1980) – models of continuous neural tissue.

Kohonen (1981) - simplification, no inhibition; leaving two essential factors: competition and cooperation.

Self-Organized Map: idea

Data: vectors $\mathbf{X}^T = (X_1, ... X_d)$ from d-dimensional space.

Grid of nodes, with local processor (called neuron) in each node.

Local processor # j has d adaptive parameters $\mathbf{W}^{(j)}$.

Goal: change **W**^(j) parameters to recover data clusters in **X** space.

SOM algorithm: competition

Nodes should calculate similarity of input data to their parameters. Input vector **X** is compared to node parameters **W**. Similar = minimal distance or maximal scalar product.

Competition: find node j=c with **W** most similar to **X**.

$$\|\mathbf{X} - \mathbf{W}^{(j)}\| = \sqrt{\sum_{i} \left(X_{i} - W_{i}^{(j)}\right)^{2}}$$

$$c = \arg\min_{j} \|\mathbf{X} - \mathbf{W}^{(j)}\|$$

Node number c is most similar to the input vector \mathbf{X} It is a winner, and it will learn to be more similar to \mathbf{X} , hence this is a "competitive learning" procedure.

Brain: those neurons that react to some signals pick it up and learn.

SOM algorithm: cooperation

Cooperation: nodes on a grid close to the winner c should behave similarly. Define the "neighborhood function" O(c):

$$h(r, r_c, t) = h_0(t) \exp(-\|r - r_c\|^2 / \sigma_c^2(t))$$

t – iteration number (or time);

 r_c – position of the winning node c (in physical space, usually 2D).

 $||r-r_c||$ – distance from the winning node, scaled by $\sigma_c(t)$.

 $h_0(t)$ – slowly decreasing multiplicative factor

The neighborhood function determines how strongly the parameters of the winning node and nodes in its neighborhood will be changed, making them more similar to data **X**

SOM algorithm

$$\begin{split} \mathbf{X}^{\mathrm{T}} &= (X_1, X_2 \ldots X_d) \text{, samples from feature space.} \\ &\text{Create a grid with nodes } i = 1 \ldots K \text{ in 1D, 2D or 3D,} \\ &\text{each node with d-dimensional vector } \mathbf{W}^{(i)\mathrm{T}} = (\mathbf{W}_1{}^{\scriptscriptstyle (i)} \ \mathbf{W}_2{}^{\scriptscriptstyle (i)} \ldots \mathbf{W}_d{}^{\scriptscriptstyle (i)}), \\ &\mathbf{W}^{(i)} &= \mathbf{W}^{(i)}(t), \text{ changing with } t - \text{discrete time.} \end{split}$$

- 1. Initialize: random small $\mathbf{W}^{(i)}(0)$ for all i=1...K. Define parameters of neighborhood function $h(|r_i-r_c|/\sigma(t),t)$
- 2. Iterate: select randomly input vector \mathbf{X}
- 3. Calculate distances $d(\mathbf{X}, \mathbf{W}^{(i)})$, find the winner node $\mathbf{W}^{(c)}$ most similar (closest to) \mathbf{X}
- 4. Update weights of all neurons in the neighborhood $O(r_c)$
- 5. Decrease the influence $h_o(t)$ and shrink neighborhood $\sigma(t)$.
- 6. If in the last T steps all $\mathbf{W}^{(i)}$ changed less than ε then stop.

SOM algorithm: dynamics

Adaptation rule: take the winner node c, and those in its neighborhood $O(r_c)$, change their parameters making them more similar to the data ${\bf X}$

For $\forall i \in O(c)$

$$\mathbf{W}^{(i)}(t+1) = \mathbf{W}^{(i)}(t) + h(r_i, r_{c,t}) \left[\mathbf{X}(t) - \mathbf{W}^{(i)}(t) \right]$$

Select randomly new sample vector X, and repeat. Decrease $h_0(t)$ slowly until there will be no changes.

Result:

- W⁽ⁱ⁾ ≈ the center of local clusters in the X feature space
- Nodes in the neighborhood point to adjacent areas in X space

1D network, 2D data

2D network, 3D data

Training process

Java demos: http://www.neuroinformatik.ruhr-uni-bochum.de/ ini/VDM/research/gsn/DemoGNG/GNG.html

2D => 2D, square

Initially all $W\approx 0$, pointing to the center of the 2D space, but over time they learn to point at adjacent positions with uniform distribution.

2D => 1D in a triangle

The line in the data space forms a Peano curve, an example of a fractal. Why?

Map distortions

Initial distortions may slowly disappear or may get frozen ... giving the user a completely distorted view of reality.

Demonstrations with GNG

Growing Self-Organizing Networks demo

Parameters in the SOM program:

t – iterations

 $\varepsilon(t) = \varepsilon_i (\varepsilon_f / \varepsilon_i)^{t/tmax}$ to reduce the learning step $\sigma(t) = \sigma_i (\sigma_f / \sigma_i)^{t/tmax}$ to reduce the neighborhood size

$$h(r, r_c, t, \varepsilon, \sigma) = \varepsilon(t) \exp\left(-\left\|r - r_c\right\|^2 / \sigma^2(t)\right)$$

Try some 1x30 maps to see forming of Peano curves.

Learning constant

Large learning constants: point on the map move constantly, slow stabilization.

Uniform distribution of data points within the torus lead to formation of maps that have uniform distribution of parameters (codebook vectors).