Computational Intelligence:
Methods and Applications

Lecture 9
Self-Organized Mappings

Wiodzistaw Duch
SCE, NTU, Singapore
Google: Duch

Brain maps

Tactile, motor, and olfactory data are most basic.

Such data is analyzed by animal brains using topographical
organization of the brain cortex.

* Somatosensory maps for tactile, temperature, pain, itching, and

vibration signals.
* Motor maps in frontal neocortex and cerebellum cortex.
* Auditory tonotopic maps in temporal cortex.
* Visual orientation maps in primary visual cortex.
* Multimodal orientation maps (superior colliculus)

Senso-motoric map

Visual signals are analyzed by maps coupled with motor maps and
providing senso-motoric responses.

DOORGINATE TRANSFORMATION BY CONTIGUOUS TOPOGRAPHIC 1APS

Figure from:

P.S. Churchland,
T.J. Sejnowski,

The computational
brain.

MIT Press, 1992

HOTOR
e TOPUGRAPHEC MAP

REAL SPATE
TOPOGRAPHIT MAP
IMETRICALLY DEFORMED)

Somatosensoric and motor maps

SOHATUSENSORY CORTEX 4 HOTOR CORTEX: HOMUNEULUS
- PRECENTRAL GYRUS

Representation of fingers

DRSZAFR SR QBSZAR T

" Before | 7 After
stimulation 7 stimulation

Face

Models of self-organization

SOM or SOFM (Self-Organized Feature Mapping) — self-organizing
feature map, one of the simplest models.

How can such maps develop spontaneously?

Local neural connections: neurons interact strongly with those
nearby, but weakly with those that are far (in addition inhibiting
some intermediate neurons).

History:

von der Malsburg and Willshaw (1976), competitive learning, Hebb
mechanisms, ,Mexican hat” interactions, models of visual systems.
Amari (1980) — models of continuous neural tissue.

Kohonen (1981) - simplification, no inhibition; leaving two essential
factors: competition and cooperation.

Self-Organized Map: idea

© - data poinis
" - values of node parameters

Feature space, 30

Each node adjusts s W
when ix,y.z} input appears

Locai processors change
vector W with parameters.

Computing grid: each
node is a iocal processor

Data: vectors XT = (X, ... X,) from d-dimensional space.
Grid of nodes, with local processor (called neuron) in each node.

Local processor # j has d adaptive parameters W0,

Goal: change WU parameters to recover data clusters in X space.

SOM algorithm: competition

Nodes should calculate similarity of input data to their parameters.
Input vector X is compared to node parameters W.
Similar = minimal distance or maximal scalar product.

Competition: find node j=c with W most similar to X.

[x-w |- fE 0wy

c=arg m_inHX - W(j)H
J

Node number ¢ is most similar to the input vector X

It is a winner, and it will learn to be more similar to X, hence this is
a “competitive learning” procedure.

Brain: those neurons that react to some signals pick it up and learn.

SOM algorithm: cooperation

Cooperation: nodes on a grid close to the winner ¢ should behave
similarly. Define the “neighborhood function” O(c):

h(r,r.0) = hy(nexp(~|r=r.| /6.2(1))

t — iteration number (or time);

r, — position of the winning node ¢ (in physical space, usually 2D).
llr-r Il - distance from the winning node, scaled by o(7).

h(t) — slowly decreasing multiplicative factor

The neighborhood function determines how strongly the
parameters of the winning node and nodes in its neighborhood will
be changed, making them more similar to data X

SOM algorithm: dynamics

Adaptation rule: take the winner node ¢, and those in its

neighborhood O(r,), change their parameters making them more
similar to the data X

For Vie O(c)
WO (t+1) =W (1) +h(r.rt)[X(£)-W (1)]
Select randomly new sample vector X, and repeat.

Decrease (1) slowly until there will be no changes.

Result:
* W0 = the center of local clusters in the X feature space
* Nodes in the neighborhood point to adjacent areas in X space

SOM algorithm

XT=(X, X, .. X)), samples from feature space.

Create a grid with nodes i =1 .. K in 1D, 2D or 3D,

each node with d-dimensional vector WOT = (W,® W, . W @),
WO = W(F), changing with ¢ — discrete time.

1. Initialize: random small W®(0) for all i=1...K.
Define parameters of neighborhood function h(lr,—r |/o(1),1)
2. lterate: select randomly input vector X

3. Calculate distances d(X,W®), find the winner node W©
most similar (closest to) X

4. Update weights of all neurons in the neighborhood O(r,)
9. Decrease the influence h,(7) and shrink neighborhood o(?).
6. Ifin the last T steps all W® changed less than € then stop.

1D network, 2D data

Position in
the feature
space

Processors in 1D array

2D network, 3D data

feature space

o=data
' = network W(
parameters
X y z input neurons
W assigned to
processors
2-D grid with IN
processors % /’

Training process

Java demos:

http://www.neuroinformatik.ruhr-uni-bochum.de/
ini/VDM/research/gsn/DemoGNG/GNG.html

2D => 2D, square

o, T, % 4 e B o A
Snikn wahhs i
s i
35 it
t ypanaL s SEge
35isatnn: ite, szt &
% 65' Aoty o
gl s
£44 Mf A
1956 5409

Initially all W=0, pointing to the center of the 2D space, but over time
they learn to point at adjacent positions with uniform distribution.

2D => 1D in a triangle

1868

The line in the data space forms a Peano curve, an example of a fractal.
Why?

Map distortions

Initial distortions may slowly disappear or may get frozen ... giving the

user a completely distorted view of reality.

Learning constant

Large learning
constants: point on the
map move constantly,
slow stabilization.

Uniform distribution of
data points within the
torus lead to formation
of maps that have
uniform distribution of
parameters (codebook
vectors).

Demonstrations with GNG

Growing Self-Organizing Networks demo

Parameters in the SOM program:

t— iterations
e(f) = € (g,/ &) to reduce the learning step
o(f) = o, (o;/ o)™ to reduce the neighborhood size

2/02(0)

h(r,r.,t,€,0)=&(t) exp(—”r -

Try some 1x30 maps to see forming of Peano curves.

