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PCA problem

PCA transformation for 2D data:

PCA give worst possible solution here i
from the point of view of seeing the
structure of the data.

PCA is completely unsupervised,
knows only about variance, but
nothing about different classes of
data.

Goal: find direction of projection that shows more structure in the data,
using class structure; this will then be supervised approach.

“Discriminant coordinates” should reveal class structure much better.

Maximize separation

PCA does not find the best combination to reveal the structure of data.

No information about data structure, class labels, is used in PCA.

If class info is available (or clusterization has been performed):

* find mean vectors,

* find projection direction that maximizes separation of means
» for2classes: B=(X1—X2)/HX1—X2”

B direction ||B||=1 defines line

passing through 0,
the value of projection Y=BT-X

If data clusters are spherical B is a
good choice; find more projection
directions B;in the space orthogonal
to B,=B.

Here direction X, is a better choice!

Reminder: orthogonal projection

If one interesting direction B, has been found in the n-vector
X=[X",X@--X(M] data space, each with d dimensions X(=(X; ... X;)
then orthogonal space is created using projection operator:

P =I-BB;

Here P, is a dxd matrix that applied to X rotates the data space
leaving only components that are orthogonal to B,
(normalized vector, ||B,||=1).

PB =(I-BB/)B =B, -B, =0
PIBZ — (I _ BIBIT)Bz _ B2 if B, is orthogonal to B,

Create X’ = P, X and repeat the same procedure to find an interesting
orthogonal vector B..

Projection operator orthogonalizing to the [B,,B,] space is simply
P,=1-B,B,T-B,B,", adding more terms for higher P,..




Greater separation

This is not an optimal solution, although it is better than PCA ...
Covariance of the two distributions should be taken into account:
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Figure from: Chapter 4, Elements of statistical learning.
By Hasti, Tibshirani and Friedman 2001

Within-class scatter

Find transformation Y = WT.X, that maximizes the distance of
projected mean values:

7 -7 =W (X, -X,)

But scaling W may create arbitrarily large differences!
This distance should be large relatively to the variance (scatter):

ne) o Within-class scatter, or variance
STED MULES A R sl
Yi ; i without normalization constant 1/(n-1).
i=1 i=1,2 class of vectors, j=1..n(C;) sample
N,
2= z‘: §2
Yy = s 7Y i Total within-class scatter;

variances could be also used.

Fisher criterion
Maximize the Fisher criterion function:
_ |?1 _?2|2
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J(W)

This is maximum for large separation and small within-class variance.

It does not depend on the norm of W, only on the direction.
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n:Ck) o o S, is the within-class

S, = (X(’) -X, )(X(” - Xk) scatter matrix for class C,.

~.
Il
—_

Fisher linear discriminant

Total within-class scatter matrix S,=S,+S,
The difference of the means may be written as:

7 -7 =w"(X,-X,)(X,-X,) W=W'S,W
S is the between-class scatter matrix.
Fisher criterion is:
. WS, W
WS, W

This is a Rayleigh quotient, and the solution to this maximization
problem is quite simple using variational techniques.

This procedure defines FDA = Fisher Discriminant Analysis.

m‘ng(W)




FDA solution

Small perturbation of W around maximum should not influence
J(W), therefore the two scalars below should be proportional:

S,W =IS,W
This is generalized eigenvalue equation, but since $; may be inverted:
S'S,W=AW

it becomes standard eigenvalue problem. First direction is found from:
s,W=(X,-X,)(X,-X,) W=(X,-X,)a(W)
W=S"(X,-X,)a(W)/A W<W/|W|

because only the direction of W, not the length, is important, and
a(W) is a scalar that does not change direction.

More directions are found from the eigenequation or repeating the
procedure in subspace orthogonal to W.

FDA second vector

FDA is frequently used for classification, projecting data on a line.
For visualization generating the second FDA vector in a two-class
problem is not so trivial.

This is due to the fact that the rank of the Sg matrix for the 2-class
problems is 1 (why?), or for the K class problems it is K-1.

Also S, may be ill-conditioned.

Solutions:
pseudoinverse for S;makes it more stable;
perturbations of the S, values may help.

Please consult A. Webb, Statistical pattern analysis, Chapter 4.3.3 for
detailed discussion of numerical problems.

Example: FDA projections of hypercubes (using Matlab).

PCA for 3D cube

Example: Matlab PCA solution for projections of hypercubes.

For 3D cube taking all 8 vertices, from (0,0,0) to (1,1,1):

PCA selects one of the walls.
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Removing (0,0,0) and using only 7 vertices better structure is shown.
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PCA for 4/5D hypercube

For 4D cube taking 15 vertices, from (0,0,0,1) to (1,1,1,1):
For 5D cube taking 31 vertices, from (0,0,0,0,1) to (1,1,1,1,1):
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FDA for 3D cube

FDA requires classes: here odd/even parity of vertex bit strings.
Left: pseudoinverse S, , right — perturbed Sg matrix
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FDA for 4/5D cube

With perturbed Sz matrix: note that vertices from the same class
(same parity) are projected on a vertical line; perturbation does not
make them uniformly spaced along this line.

Lattice projection

For normalized data X; [0,1] FDA projection is close to the lattice
projection, defined as W,=[1,1,..1] direction and W, maximizing
separation of the points with fixed number of 1 bits.

Lattice projections may be quite useful up to 6 dimensions.

Dynamical lattice projection

The state of a dynamical X(f) system in 4 dimensions changes in
time. Where are the attractors and what is this system doing?

Seems to be going between 1000 and 0100 and 1100.

Second system presented in 2 PCA coordinates has initially 4 attractors
but becomes finally chaotic.




Vowel example

11 vowels were segmented from speech of a number of people,

and 10 features were derived for each vowel.

Examples of 2D scatterograms for standardized data are below.

Vowel PCA

PCA components 1-2, 1-3i 2-3

Vowel FDA

FDA components 1-2
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Figure from:  Chapter 4, Elements of statistical learning.

By Hasti, Tibshirani and Friedman 2001

Figure from:  Chapter 4, Elements of statistical learning.
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Figure from:

FDA prototypes

Chapter 4, Elements of statistical learning.
By Hasti, Tibshirani and Friedman 2001




