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Linear transformations — example

2D vectors X uniformly distributed in a unit circle with mean (1,1);
Y = AxX, A =2x2 matrix

The shape is elongated, rotated and the mean is shifted.

Invariant distances

Euclidean distance is not invariant to general linear transformations
Y=A-X
||Y‘” _y® H2 = (Y" -y® )T (Y -v®)
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This is invariant only for orthonormal matrices ATA = |
that make rigid rotations, without stretching or shrinking distances.

Idea: standardize the data in some way to create invariant distances.

Data standardization

For each vector component XVT=(X, 9, ... X V), j=1 .. n
calculate mean and std: n — number of vectors, d — their dimension
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Standard deviation

Calculate standard deviation:

1 iX(j) Vector of mean feature values.
Variance = square of standard
) 1 & G T\ deviation (std), sum of all
0 =— (X Xi) deviations from the mean value.

n— 1

Transform X => Z, standardized data vectors

Zl_(.i) X(J) /0'

Std data

Std data: zero mean and unit variance.
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Standardize data after making data transformation.
Effect: data is invariant to scaling only (diagonal transformation).
Distances are invariant, data distribution is the same.

How to make data invariant to any linear transformations?

Data standardization example

In slide 2 example Y=AX, assume all X means =1 and variances = 1
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check it!

_ (X(l) _x® )T ATA(X(I) _ X(2)) How to make this
invariant?

Covariance matrix

Variance (spread around mean value) + correlation between features.

C, =ﬁi(xf“ -X,)(X®-X,); ij=1-d Cyisdxd
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Cx_n_lg(x X)(X* -X) =—XX

where X is d x n dimensional matrix of vectors shifted to their means.
Covariance matrix is symmetric C; = C; and positive definite.

Diagonal elements are variances (square of std), 0',2 = C;

Pearson correlation coefficient r=C; /O',O'j € [-L+1]

Spherical distribution of data has C=I (unit matrix).

Elongated ellipsoids: large off-diagonal elements, strong correlations
between features.




Mahalanobis distance

Linear combinations of features leads to rotations and scaling of data.
Y=AX; Y=AX; C,=AC,A"

Mahalanobis distance defined as: ”X
is invariant to linear transformations:
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Principal components

How to avoid correlated features?

Correlations <> covariance matrix is non-diagonal !

Solution: diagonalize it, then use the transformation that makes it
diagonal to de-correlate features.

In matrix form,

Y=7"X; CXZ(i) = /LZ(i); CiZ=7A X, Y are dxn,
Z,Cy,Cy are dxd
Cy =ZTCXZ=ZTZA=A XY

C — symmetric, positive definite matrix XTCX > 0 for ||X||>0;
its eigenvectors are orthonormal: 7z ®OT . 7z() — §
]
its eigenvalues are all non-negative 1,2 0 !

— Hx(l) _ X(Z)
Cy Z — matrix of orthonormal eigenvectors (because Cy is real+symmetric),
transforms X into Y, with diagonal C,, i.e. decorrelated.
Matrix form Principal components

Eigenproblem for C matrix in matrix form: CXZ =7ZA

Cn C12 Cld Z11 le Zld
C21 C22 C2d Zz1 Zzz sz _
Cdl Cd2 Cdd Zdl Zd2 de

Zn le o Zld j'l 0o - 0

Z21 Zzz sz 0 /12 ’ 0

Zdl Zd2 de o 0 - ﬂ’d

PCA: old idea, C. Pearson (1901), H. Hotelling 1933

Y = ZTX. Y — principal components, or vectors X
> transformed using eigenvectors of Cy
CY = ZTCXZ =A Covariance matrix of transformed

vectors is diagonal => ellipsoidal
distribution of data.

Result: PC are linear combinations of all features, providing new
uncorrelated features, with diagonal covariance matrix = eigenvalues.

Small A; <> small variance <> data change little in direction Y;
PCA minimizes C matrix reconstruction errors:

Z, vectors for large A, are sufficient to get: ZAZ" =C X
because vectors for small eigenvalues will have very

small contribution to the covariance matrix.




Two components for visualization

Diagonalization methods: see Numerical Recipes, www.nr.com

New coordinate system:
axis ordered according to variance
= size of the eigenvalue.

First k dimensions account for . \\

fraction of all variance (please note that A, are variances);
frequently 80-90% is sufficient for rough description.

PCA properties
PC Analysis (PCA) may be achieved by:

* transformation making covariance matrix diagonal

*  projecting the data on a line for which the sums of squares of
distances from original points to projections is minimal.

* orthogonal transformation to new variables that have stationary
variances c(W) — around max. variance change is minimal.

True covariance matrices are usually not known, they have to be
estimated from data.

This works well on single-cluster data;

more complex structure may require local PCA: the PCA transformation
should then be done separately for each cluster or neighborhood of a
query vector X.

Some remarks on PCA

PC results obviously depend on the initial scaling of the features,
therefore one should standardize the data first to make it independent of
scaling or measurement units. Example: Heart data.

Assume that the data matrix X has been standardized, show that:
= 5 B
7=0 o*(v)=4
that is the mean stays as zero and the variance of principal components
is equal to the eigenvalues. Therefore rejecting ¥; components with

small variance leads to small errors in reconstruction of X = ZY, where
rejected components are replaced by zero values.

PC is useful for:

finding new, more informative, uncorrelated features;

reducing dimensionality: reject low variance features,
reconstructing original data from lower-dimensional projections.

PCA Wisconsin example

Wisconsin Breast Cancer data:

*  Collected at the University of Wisconsin Hospitals, USA.

* 699 cases, 458 (65.5%) benign (red), 241 malignant (green).
* 9features: quantized 1, 2 .. 10, cell properties, ex:

Clump Thickness, Uniformity of Cell Size, Shape, Marginal
Adhesion, Single Epithelial Cell Size, Bare Nuclei,

Bland Chromatin, Normal 1 e —
Nucleoli, Mitoses. . SSNE S

S SRS S SN S b d
2D scatterograms do not show o S g g g g
any structure no matter which ] S S AR SR SRR S S
subspaces are taken! ‘ ) soee g




Example cont.

PC gives useful information
already in 2D. .

Taking first PCA component of e

the standardized data: k

If (Y,>0.41) then benign .o
else malignant ’

18 errors/699 cases = 97.4%

Transformed vectors are not
standardized, std’s are below.

Eigenvalues decrease to
zero slowly, but classes
are well separated.
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PCA disadvantages

Useful for dimensionality reduction but:

* Largest variance determines which components are used, but
does not guarantee interesting viewpoint for clustering data.

*  The meaning of features is lost when linear combinations are
formed.

Analysis of coefficients in Z, and other important eigenvectors may
show which original features are given much weight.

PCA may be also done in an efficient way by performing singular
value decomposition of the standardized data matrix.

PCA is also called Karhuen-Loéve transformation.

Many variants of PCA are described in A. Webb, Statistical pattern
recognition, J. Wiley 2002.

2 skewed distributions

PCA transformation for 2D data:

First component will be chosen along

the largest variance line, both clusters
will strongly overlap, no interesting
structure will be visible.

In fact projection to orthogonal axis to
the first PCA component has much
more discriminating power.

Discriminant coordinates should be
used to reveal class structure.




