Computational Intelligence: Methods and Applications

Lecture 5
EDA and linear transformations.

Włodzisław Duch SCE, NTU, Singapore Google: Duch

Other EDA techniques

NIST Engineering Statistics Handbook has a chapter on exploratory data analysis (EDA).

http://www.itl.nist.gov/div898/handbook/index.htm

Unfortunately many visualization programs are written for X-Windows only, are in Fortran, or S or R languages.

Sonification: data converted to sounds!

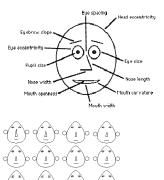
Example of sound of EEG data.

More: http://www.techfak.uni-bielefeld.de/~thermann/projects/

Think about potential applications!

Chernoff faces

Humans have specialized brain areas for face recognition.
For d < 20 represent each feature by changing some face elements.



Interesting applets:

http://www.cs.uchicago.edu/~wiseman/chernoff/ http://hesketh.com/schampeo/projects/Faces/chernoff.html

CI approach to visualization

Scatterograms: project all data on two features. Find more interesting directions to create projections. Linear projections:

- · Principal Component Analysis,
- Discriminant Component Analysis,
- Projection Pursuit "define interesting" projections.

Non-linear methods – more advanced, some will appear later.

Statistical methods: multidimensional scaling.

Neural methods: competitive learning, Self-Organizing Maps.

Kernel methods, principal curves and surfaces.

Information-theoretic methods.

Distances in feature spaces

Data vector, d-dimensions $\mathbf{X}^{\mathrm{T}} = (X_1, \dots X_d), \mathbf{Y}^{\mathrm{T}} = (Y_1, \dots Y_d)$ Distance, or metric function, is a 2-argument function that satisfies:

$$d(\mathbf{X}, \mathbf{Y}) = ||\mathbf{X} - \mathbf{Y}|| \ge 0; \quad d(\mathbf{X}, \mathbf{Y}) = d(\mathbf{Y}, \mathbf{X})$$
$$d(\mathbf{X}, \mathbf{Y}) \le d(\mathbf{X}, \mathbf{Z}) + d(\mathbf{Z}, \mathbf{Y})$$

Distance functions measure (dis)similarity.

Popular distance functions:

Euclidean distance (L₂ norm)
$$\|\mathbf{X} - \mathbf{Y}\|_2 = \left(\sum_{i=1}^d (X_i - Y_i)^2\right)^{1/2}$$

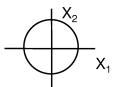
Manhattan (city-block) distance
$$\|\mathbf{X} - \mathbf{Y}\|_{\mathbf{I}} = \sum_{i=1}^{d} |X_i - Y_i|$$

Two metric functions

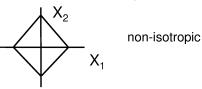
Equidistant points in 2D: $\|\mathbf{X} - \mathbf{P}\|_{L} = \|\mathbf{Y} - \mathbf{P}\|_{L}$

Euclidean case: circle or sphere

Manhattan case: square



isotropic



Identical distance between two points X, Y: imagine that in 10 D!

All points in the shaded area have the same Manhattan distance to X and Y!

Linear transformations

2D vectors **X** in a unit circle with mean (1,1); **Y** = **A*****X**, **A** = 2x2 matrix

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

The shape and the mean of data distribution is changed. Scaling (diagonal a_{ii} elements); rotation (off-diag), mirror reflection. Distances between vectors are not invariant: $||Y^1-Y^2|| \neq ||X^1-X^2||$

Invariant distances

Euclidean distance is not invariant to linear transformations $\mathbf{Y} = \mathbf{A} * \mathbf{X}$, scaling of units has strong influence on distances.

How to select scaling/rotations for simplest description of data?

$$\|\mathbf{Y}^{(1)} - \mathbf{Y}^{(2)}\|^{2} = (\mathbf{Y}^{(1)} - \mathbf{Y}^{(2)})^{\mathrm{T}} (\mathbf{Y}^{(1)} - \mathbf{Y}^{(2)})$$
$$= (\mathbf{X}^{(1)} - \mathbf{X}^{(2)})^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} (\mathbf{X}^{(1)} - \mathbf{X}^{(2)})$$

Orthonormal matrices: $A^TA = I$, are inducing rigid rotations.

To achieve full invariance requires therefore standardization of data (scaling invariance) and should use covariance matrix.

Mahalanobis metric will replace A^TA by inverse of the covariance matrix.

Data standardization

For each vector component $\mathbf{X}^{(j)\mathrm{T}}=(X_1{}^{(j)},\ldots X_d{}^{(j)}), j=1\ldots n$ calculate mean and std: n – number of vectors, d – their dimension

$$\overline{X}_{i} = \frac{1}{n} \sum_{j=1}^{n} X_{i}^{(j)}; \quad \overline{X} = \frac{1}{n} \sum_{j=1}^{n} X^{(j)}$$

Vector of mean feature values.

	$\mathbf{X}^{(1)}$	$\mathbf{X}^{(2)}$	•••	$\mathbf{X}^{(n)}$
\overline{X}_1	$X_1^{(1)}$	$X_1^{(2)}$	•••	$X_1^{(n)}$
\bar{X}_2	$X_{2}^{(1)}$	$X_{2}^{(2)}$	•••	$X_2^{(n)}$
:	:	:	•••	:
\overline{X}_d	$X_d^{(1)}$	$X_d^{(2)}$	•••	$X_d^{(n)}$

Averages over rows.

Standardized data

Std data: zero mean and unit variance.

$$\overline{Z}_{i} = \frac{1}{n} \sum_{j=1}^{n} Z_{i}^{(j)} = \frac{1}{n} \sum_{j=1}^{n} \left(X_{i}^{(j)} - \overline{X}_{i} \right) / \sigma_{i} = 0$$

$$\sigma_{z,i}^{2} = \frac{1}{n-1} \sum_{j=1}^{n} \left(Z_{i}^{(j)} - \overline{Z}_{i} \right)^{2} = \frac{1}{n-1} \sum_{j=1}^{n} \left(X_{i}^{(j)} - \overline{X}_{i} \right)^{2} / \sigma_{i}^{2} = 1$$

Standardize data after making data transformation.

Effect: data is invariant to scaling only; for diagonal transformations distances after standardization are invariant, are based on identical units.

Note: it does not mean that all data models are performing better! How to make data invariant to any linear transformations?

Standard deviation

Calculate standard deviation:

$$\overline{X}_i = \frac{1}{n} \sum_{j=1}^n X_i^{(j)}$$

$$\sigma_i^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i^{(j)} - \overline{X}_i)^2$$

Vector of mean feature values.

Variance = square of standard deviation (std), sum of all deviations from the mean value.

Why n-1, not n? If true mean was known it should be n, but if the mean is calculated the formula with n-1 converges to the true variance! Transform $X \Rightarrow Z$, standardized data vectors:

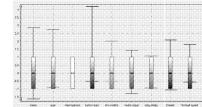
$$Z_i^{(j)} = \left(X_i^{(j)} - \overline{X}_i\right) / \sigma_i$$

Std example

Before std



After std



Mean and std are shown using a colored bar; minimum and max values may extend outside.

Some features (ex. yellow), have large values; some (ex: gray) have small values; this may depend on units used to measure them.

Standardized data have all mean 0 and σ =1, thus contribution from different features to similarity or distance calculation is comparable.