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Chernoff faces

Humans have specialized brain

areas for face recognition. .
For d < 20 represent each Eus sty
feature by changing some face
elements. Hose vidth

Mouth apenness

Nose length

Mouth curvature

Mouth width
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Interesting applets:

http://www.cs.uchicago.edu/~wiseman/chernoff/

http://hesketh.com/schampeo/projects/Faces/chernoff.html

Other EDA techniques

NIST Engineering Statistics Handbook has a chapter on
exploratory data analysis (EDA).

http://www.itl.nist.gov/div898/handbook/index.htm

Unfortunately many visualization programs are written for X-Windows
only, are in Fortran, or S or R languages.

Sonification: data converted to sounds!

Example of sound of EEG data.

More: http://www.techfak.uni-bielefeld.de/~thermann/projects/
Think about potential applications!

Cl approach to visualization

Scatterograms: project all data on two features.
Find more interesting directions to create projections.
Linear projections:

*  Principal Component Analysis,
*  Discriminant Component Analysis,
*  Projection Pursuit — “define interesting” projections.

Non-linear methods — more advanced, some will appear later.

Statistical methods: multidimensional scaling.

Neural methods: competitive learning, Self-Organizing Maps.
Kernel methods, principal curves and surfaces.
Information-theoretic methods.




Distances in feature spaces

Data vector, d-dimensions XT = (X, ... X)), YT = (Y}, ... ¥))
Distance, or metric function, is a 2-argument function that satisfies:

d(X.Y)=|X-Y|20; d(X.Y)=d(Y.X)
d (X,Y) < d(X,Z) +d(Z,Y)
Distance functions measure (dis)similarity.

Popular distance functions:

d , 1/2
Euclidean distance (L, norm) [x- Y”z - [ L (X;-7) ]
Manhattan (city-block) distance ||X - Y”l = i|xi _ Y,|
(Ly norm) i=1

Two metric functions

Equidistant points in 2D:  |[X -P|, =|Y P,
Euclidean case: circle or sphere Manhattan case: square
X, X,
isotropic non-isotropic

X1 X1
Identical distance between two points X, Y: imagine thatin 10 D !

X o X .

All points in the shaded area have the same
Manhattan distance to X and Y!

Linear transformations

2D vectors X in a unit circle with mean (1,1); Y = A=X, A = 2x2 matrix

The shape and the mean of data distribution is changed.
Scaling (diagonal a; elements); rotation (off-diag), mirror reflection.
Distances between vectors are not invariant: ||Y1-Y?2||£||X'-X?]|

Invariant distances

Euclidean distance is not invariant to linear transformations Y = AxX,
scaling of units has strong influence on distances.
How to select scaling/rotations for simplest description of data?

Hy(l) YOI = (Y0 -y® )T (Y0 -v®)

- (x - x@ )T ATA (Xm -x®)
Orthonormal matrices: ATA = |, are inducing rigid rotations.

To achieve full invariance requires therefore standardization of data
(scaling invariance) and should use covariance matrix.

Mahalanobis metric will replace ATA by inverse of the covariance matrix.




Data standardization

For each vector component XWT=(X,9), ... X /), j=1 .. n

calculate mean and std: 7 — number of vectors, d — their dimension

_ 1 ) _ 1 ]
X, =—2Xf’); X=—ZX(” Vector of mean
nis n = feature values.
X0 x@ ... x®™
_ Averages over
X1 X1(1) X1(2) .. Xl(") rows.
v (D (2) (n)
X2 X2 X2 X2
v (D (2) (n)
X/l X// X/] le

Standard deviation

Calculate standard deviation:

— 1 _ Vector of mean feature values.
X, = _Z X_(J)
n-
= Variance = square of standard
5 1 & G = \2 deviation (std), sum of all
0 = P (X Xi) deviations from the mean value.
Jj=1

Why n—1, not n ? If true mean was known it should be 7, but if the mean
is calculated the formula with n—1 converges to the true variance!
Transform X => Z, standardized data vectors:

70 = X(“ /0'

Standardized data

Std data: zero mean and unit variance.

7 1 (')_1 (@)
Z=] Zif_n”Xf X,)/0,=0

1 =2 1 & L —\2
72 -

Standardize data after making data transformation.
Effect: data is invariant to scaling only; for diagonal transformations

distances after standardization are invariant, are based on identical units.

Note: it does not mean that all data models are performing better!
How to make data invariant to any linear transformations?

Std example

Mean and std are shown
using a colored bar;
minimum and max values
may extend outside.

Before std

Some features (ex. yellow),
have large values; some
(ex: gray) have small
values; this may depend on
units used to measure them.

Atfter std Standardized data have all

mean 0 and o=1, thus
contribution from different
features to similarity or
distance calculation is
comparable.
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